Skip to main content
Log in

Improved Properties of Aromatic Polyamide Tape-casting Films

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A convenient tape-casting method was applied to prepare high performance aromatic polyamide (PA) films based on Technora®. During the polycondensation, CaO was introduced to improve the solubility of the PA resin, and the generated halides were totally removed from the film via a simple water bath, without leaving any defects in PA films. The factors of processing temperature and immersion time had been systematically investigated, and the experimental results demonstrated that both of them had impressive impacts on aggregation state and comprehensive properties of the PA film. It was suggested that immersion in water for more than 1 min and baking below 300 °C for 10 min were the optimal conditions for the thermal, tensile, tear, and optical properties to be in the best equilibrium. The resultant PA films integrated outstanding film-forming ability and excellent general performance, especially the tensile property and tear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amornsakchai, T.; Sinpatanapan, B.; Bualek-Limcharoen, S.; Meesiri, W. Composite of aramid fibre (poly-m-phenylene isophthalamide) thermoplastic elastomers (SEBS): enhancement of tensile properties by maleated-SEBS compatibiliser. Polymer1999, 40, 2993–2999.

    CAS  Google Scholar 

  2. García, J. M.; García, F. C.; Serna, F.; de la Peña, J. L. Highperformance aromatic polyamides. Prog. Polym. Sci.2010, 35, 623–686.

    Google Scholar 

  3. Tamami, B.; Yeganeh, H. Synthesis and characterization of novel aromatic polyamides derived from 4-aryl-2,6-bis(4-aminophenyl) pyridines. Polymer2001, 42, 415–420.

    CAS  Google Scholar 

  4. Oishi, Y.; Kakimoto, M.; Imai, Y. Synthesis of aromatic polyamides from N,N′-bis(trimethylsilyl)-substituted aromatic diamines and aromatic diacid chlorides. Macromolecules1988, 21, 547–550.

    CAS  Google Scholar 

  5. Liaw, D. J.; Liaw, B. Y.; Yang, C. M. Synthesis and properties of new polyamides based on bis[4-(4-aminophenoxy)phenyl] diphenylmethane. Macromolecules1999, 32, 7248–7250.

    CAS  Google Scholar 

  6. Park, J. H.; Rutledge, G. C. 50th Anniversary perspective: advanced polymer fibers: high performance and ultrafine. Macromolecules2017, 50, 5627–5642.

    CAS  Google Scholar 

  7. Morgan, P. W. Synthesis and properties of aromatic and extended chain polyamides. Macromolecules1977, 10, 1381–1390.

    CAS  Google Scholar 

  8. Penn, L.; Larsen, F. Physicochemical properties of Kevlar-49 fiber. J. Appl. Polym. Sci.1979, 23, 59–73.

    CAS  Google Scholar 

  9. Mahy, J.; Jenneskens, L. W.; Grabandt, O. The fiber-matrix interphase and the adhesion mechanism of surface-treated Twaron® aramid fiber. Compos. Part A-Appl. S.1994, 25, 653–660.

    CAS  Google Scholar 

  10. Wortmann, F. J.; Schulz, K. V. Nonlinear viscoelastic performance of Nomex, Kevlar and polypropylene fibers in a single-step stressrelaxation test. 1. Experimental-data and principles of analysis. Polymer1994, 35, 2108–2116.

    CAS  Google Scholar 

  11. Yao, L.; Kim, K.; Kim, J. Fabrication of meta-aramid fibrid by precipitation. Fiber. Polym.2012, 13, 277–281.

    CAS  Google Scholar 

  12. Ryu, S. Y.; Chung, J. W.; Kwak, S. Y. Amphiphobic meta-aramid nanofiber mat with improved chemical stability and mechanical properties. Eur. Polym. J.2017, 91, 111–120.

    CAS  Google Scholar 

  13. Yin, F.; Tang, C.; Li, X.; Wang, X. Effect of moisture on mechanical properties and thermal stability of meta-aramid fiber used in insulating paper. Polymers (Basel)2017, 9, 537.

    Google Scholar 

  14. Li, J.; Tian, W.; Yan, H.; He, L.; Tuo, X. J. Preparation and performance of aramid nanofiber membrane for separator of lithium ion battery. J. Appl. Polym. Sci.2016, 133, 43623.

    Google Scholar 

  15. Lee, J. H.; Manuel, J.; Liu, Y.; Park, K. E.; Park, W. H.; Ahn, J. H. J. Nanotechnology high temperature resistant electrospun nanofibrous meta-aramid separators for lithium ion batteries. J. Nanosci. Nanotechnol.2016, 16, 10724–10729.

    CAS  Google Scholar 

  16. Jeong, B.H.; Hoek, E. M. V.; Yan, Y.; Subramani, A.; Huang, X.; Hurwitz, G.; Ghosh, A. K.; Jawor, A. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Membr. Sci.2007, 294, 1–7.

    CAS  Google Scholar 

  17. Lind, M. L.; Suk, D. E.; Nguyen, T. V.; Hoek, E. M. V. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RD membrane performance. Environ. Sci. Technol.2015, 44, 8230–8235.

    Google Scholar 

  18. Yagoub, M.; Behzad, K. Z.; Hemayat, S.; Reza, Z. M.; Gholam, H. Polyamides with pendant 1,3,4-oxadiazole and pyridine moieties. Chinese J. Polym. Sci.2012, 30, 112–121.

    Google Scholar 

  19. Lee, H. S.; Kim, S. Y. Synthesis of poly(arylene ether amide)s containing CF3 groups by nitro displacement reaction of AB-type monomers. Macromol. Rapid Commun.2002, 665–671.

  20. In, I.; Kim, S. Y. Soluble wholly aromatic polyamides containing unsymmetrical pyridyl ether linkages. Polymer2006, 47, 547–552.

    CAS  Google Scholar 

  21. Na, L.; Yu, J. R.; Yan, W.; Jing, Z.; Hu, Z. M. Synthesis and characterization of easily colored meta-aramid copolymer containing ether bonds. Chinese J. Polym. Sci.2018, 37, 227–234.

    Google Scholar 

  22. Wang, C. Y.; Li, P. H.; Li, G.; Jiang, J. M. High optical transparency and low dielectric constant of novel organosoluble poly(ether ketone amide)s derived from an unsymmetrical diamine containing trifluoromethyl and methyl pendant groups. Colloid Polym. Sci.2009, 287, 495–500.

    CAS  Google Scholar 

  23. Cheng, L.; Jian, X. G.; Mao, S. Z. Aromatic polyamides derived from unsymmetrical diamines containing the phthalazinone moiety. J. Polym. Sci., Part A: Polym. Chem.2010, 40, 3489–3496.

    Google Scholar 

  24. Mohsen, H.; Khalil, F.; Majid, K. T.; Zeinab, M. Thermally stable and organo-soluble polyamides containing triazine rings and ether linkages in the main chain: synthesis and characterization. Chinese J. Polym. Sci.2015, 33, 109–117.

    Google Scholar 

  25. Tec-Sánchez, J. A.; Arias, A. I. O.; Aguilar-Vega, M.; Cauich-Rodríguez, J. V.; Santiago-García, J. L. Preparation and characterization of flexible, transparent and thermally stable aromatic co-polyamides. Chinese J. Polym. Sci.2018, 36, 136–141.

    Google Scholar 

  26. Ge, Z.; Yang, S.; Tao, Z.; Liu, J.; Fan, L. Synthesis and characterization of novel soluble fluorinated aromatic polyamides derived from fluorinated isophthaloyl dichlorides and aromatic diamines. Polymer2004, 45, 3627–3635.

    CAS  Google Scholar 

  27. Chen, W.; Chen, W.; Zhang, B.; Yang, S.; Liu, C. Y. Thermal imidization process of polyimide film: interplay between solvent evaporation and imidization. Polymer2017, 109, 205–215.

    CAS  Google Scholar 

  28. Matsuda, H.; Asakura, T.; Nakagawa, Y. Sequence analysis of technora (copolyamide of terephthaloyl chloride, p-phenylenediamine, and 3,4′-diaminodiphenyl ether) using 13C NMR. Macromolecules2003, 36, 6160–6165.

    CAS  Google Scholar 

  29. Dai, Y.; Cheng, Z.; Yuan, Y.; Meng, C.; Qin, J.; Liu, X. In situ complex with by-product HCl and release chloride ions to dissolve aramid. ChemPhysChem2018, 19, 2468–2471.

    CAS  PubMed  Google Scholar 

  30. Yan, H.; Li, J.; Tian, W.; He, L.; Tuo, X.; Qiu, T. A new approach to the preparation of poly(p-phenylene terephthalamide) nanofibers. RSC Adv.2016, 6, 26599–26605.

    CAS  Google Scholar 

  31. Skrovanek, D. J.; Painter, P. C.; Coleman, M. M. Hydrogen bonding in polymers. 2. Infrared temperature studies of nylon 11. Macromolecules1986, 19, 699–705.

    CAS  Google Scholar 

  32. Zhang, K.; Yu, Q.; Zhu, L.; Liu, S.; Chi, Z.; Chen, X.; Zhang, Y.; Xu, J. The preparations and water vapor barrier properties of polyimide films containing amide moieties. Polymers (Basel)2017, 9.

  33. Yu, S.; Chen, F.; Wu, Q.; Roth, S. V.; Brüning, K.; Schneider, K.; Kuktaite, R.; Hedenqvist, M. S. Structural changes of gluten/glycerol plastics under dry and moist conditions and during tensile tests. ACS Sustain. Chem. Eng.2016, 4, 3388–3397.

    CAS  Google Scholar 

  34. Wu, J.; Yang, S.; Gao, S.; Hu, A.; Liu, J.; Fan, L. Preparation, morphology and properties of nano-sized Al2O3/polyimide hybrid films. Eur. Polym. J.2005, 41, 73–81.

    CAS  Google Scholar 

  35. https://www.dupont.com/content/dam/dupont/amer/us/en/products/ei-transformation/documents/DEC-Kapton-HN-datasheet.pdf

  36. Bullions, T. A.; Stoykovich, M. P.; McGrath, J. E.; Loos, A. C. Monitoring the reaction progress of a high-performance phenylethynyl-terminated poly(etherlmide). Part II: advancement of glass transition temperature. Polym. Compos.2002, 23, 479–494.

    CAS  Google Scholar 

  37. Ishii, J.; Takata, A.; Oami, Y.; Yokota, R.; Vladimirov, L.; Hasegawa, M. Spontaneous molecular orientation of polyimides induced by thermal imidization (6). Mechanism of negative in-plane CTE generation in non-stretched polyimide films. Eur. Polym. J.2010, 46, 681–693.

    CAS  Google Scholar 

  38. Song, G.; Zhang, X.; Wang, D.; Zhao, X.; Zhou, H.; Chen, C.; Dang, G. Negative in-plane CTE of benzimidazole-based polyimide film and its thermal expansion behavior. Polymer2014, 55, 3242–3246.

    CAS  Google Scholar 

  39. Jung, Y.; Yang, Y.; Lee, S.; Byun, S.; Jeon, H.; Cho, M. D. Characterization of fluorinated polyimide morphology by transition mechanical analysis. Polymer2015, 59, 200–206.

    CAS  Google Scholar 

  40. Shao, L.; Chung, T. S.; Wensley, G.; Goh, S. H.; Pramoda, K. P. Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA-TMMDA copolyimide membrane and its derived carbon membranes. J. Membr. Sci.2004, 244, 77–87.

    CAS  Google Scholar 

  41. Rusu, G.; Ueda, K.; Rusu, E.; Rusu, M. Polyamides from lactams by centrifugal molding via anionic ring-opening polymerization. Polymer2001, 42, 5669–5678.

    CAS  Google Scholar 

  42. Song, Y.; Yamamoto, H.; Nemoto, N. Segmental orientations and deformation mechanism of poly(ether-block-amide) films. Macromolecules2004, 27, 6219–6226.

    Google Scholar 

  43. Wen, L.; Zhang, J.; Zhou, T.; Zhang, A. Hydrogen bonding in micro-phase separation of poly(polyamide 12-block-polytetrahydrofuran) alternating block copolymer: enthalpies and molecular movements. Vib. Spectrosc.2016, 86, 160–172.

    CAS  Google Scholar 

  44. Hasegawa, M.; Sakamoto, Y.; Tanaka, Y.; Kobayashi, Y. Poly(ester imide)s possessing low coefficients of thermal expansion (CTE) and low water absorption (III). Use of bis(4-aminophenyl)terephthalate and effect of substituents. Eur. Polym. J.2010, 46, 1510–1524.

    CAS  Google Scholar 

  45. Hasegawa, M.; Ishigami, T.; Ishii, J.; Sugiura, K.; Fujii, M. Solution-processable transparent polyimides with low coefficients of thermal expansion and self-orientation behavior induced by solution casting. Eur. Polym. J.2013, 49, 3657–3672.

    CAS  Google Scholar 

  46. Ma, S. P.; Sasaki, T.; Sakurai, K.; Takahashi, T. Morphology of solution-cast thin films of wholly aromatic thermoplastic polyimides with various molecular weights. Polymer, 1994, 35, 5618–5625.

    CAS  Google Scholar 

  47. Kovalev, M. K.; Kalinina, F.; Androsov, D. A.; Cho, C. Synthesis of transparent and thermally stable polyimide-aramid nanocomposites-prospective materials for high-temperature electronic manufacture applications. Polymer2013, 54, 127–133.

    CAS  Google Scholar 

  48. Kim, S. K.; Wang, X.; Ando, S.; Wang, X. Highly transparent triethoxysilane-terminated copolyimide and its SiO2 composite with enhanced thermal stability and reduced thermal expansion. Eur. Polym. J.2015, 64, 206–214.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51973225).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Xia Yang or Shi-Yong Yang.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, FL., He, JJ., Yang, HX. et al. Improved Properties of Aromatic Polyamide Tape-casting Films. Chin J Polym Sci 38, 1345–1354 (2020). https://doi.org/10.1007/s10118-020-2445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2445-3

Keywords

Navigation