Skip to main content
Log in

Oriented wrinkle textures of free-standing graphene nanosheets: application as a high-performance lithium-ion battery anode

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Morphology control of a graphene nanosheet (GNS) is important for graphene-based battery electrodes to exhibit the increased practical surface area and the enhanced ion diffusion into the nanosheets. Nevertheless, it is very difficult to minutely control the shape of graphene nanosheets based on the conventional GNS suspension methods. In this work, we fabricated wrinkle textures of free-standing GNS for large area using Langmuir–Schaefer technique. The wrinkles are oriented vertically to the direction of the monolayer compression. The textured structure of GNS was obtained by cross-deposition of each layer with controlling the orientation of the wrinkle direction. These wrinkles can cause Li-ion to diffuse into the voids created by them and raise the specific surface area between the GNSs. Consequently, as a prospective anode for Li-ion battery, the wrinkled GNS multilayer, exhibits the high specific capacity of ~ 740 mAh g−1 at 100 mA g−1 and the great power capability with ~ 404 mAh g−1 being delivered even at 2 A g−1. Furthermore, outstanding cycle performance of the wrinkled GNS multilayer is achieved over 200 cycles at 300 mA g−1 with high Coulombic efficiency of ~ 96%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Luo B, Zhi L (2015) Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy Environ 8(2):456–477. https://doi.org/10.1039/c4ee02578d

    Article  CAS  Google Scholar 

  2. El-Kady MF, Shao Y, Kaner RB (2016) Graphene for batteries, supercapacitors and beyond. Nat Rev Mater 1(7):16033. https://doi.org/10.1038/natrevmats.2016.33

    Article  CAS  Google Scholar 

  3. Hou J, Shao Y, Ellis MW, Moore RB, Yi B (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13(34):15384–15402. https://doi.org/10.1039/c1cp21915d

    Article  CAS  Google Scholar 

  4. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145. https://doi.org/10.1021/cr900070d

    Article  CAS  Google Scholar 

  5. Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715. https://doi.org/10.1039/c5ta00252d

    Article  CAS  Google Scholar 

  6. Kim H, Park K-Y, Hong J, Kang K (2014) All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries. Sci Rep 4:5278. https://doi.org/10.1038/srep05278

    Article  CAS  Google Scholar 

  7. Bo Z, Wen Z, Kim H, Lu G, Yu K, Chen J (2012) One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon 50(12):4379–4387. https://doi.org/10.1016/j.carbon.2012.05.014

    Article  CAS  Google Scholar 

  8. Seo DH, Han ZJ, Kumar S, Ostrikov K (2013) Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance. Adv Energy Mater 3(10):1316–1323. https://doi.org/10.1002/aenm.201300431

    Article  CAS  Google Scholar 

  9. Bo Z, Zhu W, Ma W, Wen Z, Shuai X, Chen J, Yan J, Wang Z, Cen K, Feng X (2013) Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors. Adv Mater 25(40):5799–5806. https://doi.org/10.1002/adma.201301794

    Article  CAS  Google Scholar 

  10. Kim H, Kim J, Jeong H-S, Kim H, Lee H, Ha J-M, Choi S-M, Kim T-H, Nah Y-C, Shin TJ (2018) Spontaneous hybrids of graphene and carbon nanotube arrays at the liquid–gas interface for Li-ion battery anodes. Chem Commun 54(41):5229–5232. https://doi.org/10.1039/c8cc02148a

    Article  CAS  Google Scholar 

  11. Wang H, Cui L-F, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4—graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132(40):13978–13980. https://doi.org/10.1021/ja105296a

    Article  CAS  Google Scholar 

  12. Lee JK, Smith KB, Hayner CM, Kung HH (2010) Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chem Commun 46(12):2025–2027. https://doi.org/10.1039/b919738a

    Article  CAS  Google Scholar 

  13. Li N, Liu G, Zhen C, Li F, Zhang L, Cheng HM (2011) Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv Funct Mater 21(9):1717–1722. https://doi.org/10.1002/adfm.201002295

    Article  CAS  Google Scholar 

  14. Luo J, Liu J, Zeng Z, Ng CF, Ma L, Zhang H, Lin J, Shen Z, Fan HJ (2013) Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett 13(12):6136–6143. https://doi.org/10.1021/nl403461n

    Article  CAS  Google Scholar 

  15. Xiang H, Zhang K, Ji G, Lee JY, Zou C, Chen X, Wu J (2011) Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon 49(5):1787–1796. https://doi.org/10.1016/j.carbon.2011.01.002

    Article  CAS  Google Scholar 

  16. Chang K, Wang Z, Huang G, Li H, Chen W, Lee JY (2012) Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. J Power Sources 201:259–266. https://doi.org/10.1016/j.jpowsour.2011.10.132

    Article  CAS  Google Scholar 

  17. Vinayan BP, Nagar R, Raman V, Rajalakshmi N, Dhathathreyan KS, Ramaprabhu S (2012) Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J Mater Chem 22(19):9949–9956. https://doi.org/10.1039/C2JM16294F

    Article  CAS  Google Scholar 

  18. Qiu J, Zhang P, Ling M, Li S, Liu P, Zhao H, Zhang S (2012) Photocatalytic synthesis of TiO2 and reduced graphene oxide nanocomposite for lithium ion battery. ACS Appl Mater Interfaces 4(7):3636–3642. https://doi.org/10.1021/am300722d

    Article  CAS  Google Scholar 

  19. Lee S-H, Sridhar V, Jung J-H, Karthikeyan K, Lee Y-S, Mukherjee R, Koratkar N, Oh I-K (2013) Graphene–nanotube–iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 7(5):4242–4251. https://doi.org/10.1021/nn4007253

    Article  CAS  Google Scholar 

  20. Tang Y, Huang F, Zhao W, Liu Z, Wan D (2012) Synthesis of graphene-supported Li4Ti5O12 nanosheets for high rate battery application. J Mater Chem 22(22):11257–11260. https://doi.org/10.1039/C2JM30624G

    Article  CAS  Google Scholar 

  21. Mahmood N, Zhang C, Liu F, Zhu J, Hou Y (2013) Hybrid of Co3Sn2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. ACS Nano 7(11):10307–10318. https://doi.org/10.1021/nn4047138

    Article  CAS  Google Scholar 

  22. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111(40):14925–14931. https://doi.org/10.1021/jp074464w

    Article  CAS  Google Scholar 

  23. Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647. https://doi.org/10.1021/nl200658a

    Article  CAS  Google Scholar 

  24. Luo J, Zhao X, Wu J, Jang HD, Kung HH, Huang J (2012) Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J Phys Chem Lett 3(13):1824–1829. https://doi.org/10.1021/jz3006892

    Article  CAS  Google Scholar 

  25. Son IH, Hwan Park J, Kwon S, Park S, Rümmeli MH, Bachmatiuk A, Song HJ, Ku J, Choi JW, Choi J-M, Doo S-G, Chang H (2015) Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat Commun 6:7393–7393. https://doi.org/10.1038/ncomms8393

    Article  CAS  Google Scholar 

  26. Li Y, Yan K, Lee H-W, Lu Z, Liu N, Cui Y (2016) Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat Energy 1:15029. https://doi.org/10.1038/nenergy.2015.29

    Article  CAS  Google Scholar 

  27. Behera SK (2011) Enhanced rate performance and cyclic stability of Fe3O4–graphene nanocomposites for Li ion battery anodes. Chem Commun 47(37):10371–10373. https://doi.org/10.1039/C1CC13218K

    Article  CAS  Google Scholar 

  28. Fei L, Lin Q, Yuan B, Chen G, Xie P, Li Y, Xu Y, Deng S, Smirnov S, Luo H (2013) Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance. ACS Appl Mater Interfaces 5(11):5330–5335. https://doi.org/10.1021/am401239f

    Article  CAS  Google Scholar 

  29. Wen Y, Zhu Y, Langrock A, Manivannan A, Ehrman SH, Wang C (2013) Graphene-bonded and -encapsulated Si nanoparticles for lithium ion battery anodes. Small 9(16):2810–2816. https://doi.org/10.1002/smll.201202512

    Article  CAS  Google Scholar 

  30. Zhou X, Yin Y-X, Wan L-J, Guo Y-G (2012) Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chem Commun 48(16):2198–2200. https://doi.org/10.1039/C2CC17061B

    Article  CAS  Google Scholar 

  31. Wei D, Astley MR, Harris N, White R, Ryhänen T, Kivioja J (2014) Graphene nanoarchitecture in batteries. Nanoscale 6(16):9536–9540. https://doi.org/10.1039/C4NR02089H

    Article  CAS  Google Scholar 

  32. Nethravathi C, Rajamathi CR, Rajamathi M, Gautam UK, Wang X, Golberg D, Bando Y (2013) N-Doped graphene–VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery. ACS Appl Mater Interfaces 5(7):2708–2714. https://doi.org/10.1021/am400202v

    Article  CAS  Google Scholar 

  33. Cohn AP, Oakes L, Carter R, Chatterjee S, Westover AS, Share K, Pint CL (2014) Assessing the improved performance of freestanding, flexible graphene and carbon nanotube hybrid foams for lithium ion battery anodes. Nanoscale 6(9):4669–4675. https://doi.org/10.1039/C4NR00390J

    Article  CAS  Google Scholar 

  34. Jiang X, Yang X, Zhu Y, Jiang H, Yao Y, Zhao P, Li C (2014) 3D nitrogen-doped graphene foams embedded with ultrafine TiO2 nanoparticles for high-performance lithium-ion batteries. J Mater Chem A 2(29):11124–11133. https://doi.org/10.1039/C4TA01348D

    Article  CAS  Google Scholar 

  35. Li N, Chen Z, Ren W, Li F, Cheng H-M (2012) Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc Natl Acad Sci USA 109(43):17360–17365. https://doi.org/10.1073/pnas.1210072109

    Article  Google Scholar 

  36. Wang J-G, Jin D, Zhou R, Li X, Liu X-r, Shen C, Xie K, Li B, Kang F, Wei B (2016) Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-ion batteries. ACS Nano 10(6):6227–6234. https://doi.org/10.1021/acsnano.6b02319

    Article  CAS  Google Scholar 

  37. Su F-Y, You C, He Y-B, Lv W, Cui W, Jin F, Li B, Yang Q-H, Kang F (2010) Flexible and planar graphene conductive additives for lithium-ion batteries. J Mater Chem 20(43):9644–9650. https://doi.org/10.1039/C0JM01633K

    Article  CAS  Google Scholar 

  38. Hu T, Sun X, Sun H, Yu M, Lu F, Liu C, Lian J (2013) Flexible free-standing graphene–TiO2 hybrid paper for use as lithium ion battery anode materials. Carbon 51:322–326. https://doi.org/10.1016/j.carbon.2012.08.059

    Article  CAS  Google Scholar 

  39. Gwon H, Kim H-S, Lee KU, Seo D-H, Park YC, Lee Y-S, Ahn BT, Kang K (2011) Flexible energy storage devices based on graphene paper. Energy Environ 4(4):1277–1283. https://doi.org/10.1039/C0EE00640H

    Article  CAS  Google Scholar 

  40. Zhou G, Li F, Cheng H-M (2014) Progress in flexible lithium batteries and future prospects. Energy Environ 7(4):1307–1338. https://doi.org/10.1039/C3EE43182G

    Article  CAS  Google Scholar 

  41. Choi SH, Kang YC (2014) Crumpled graphene-molybdenum oxide composite powders: preparation and application in lithium-ion batteries. Chemsuschem 7(2):523–528. https://doi.org/10.1002/cssc.201300838

    Article  CAS  Google Scholar 

  42. Mao S, Wen Z, Kim H, Lu G, Hurley P, Chen J (2012) A general approach to one-pot fabrication of crumpled graphene-based nanohybrids for energy applications. ACS Nano 6(8):7505–7513. https://doi.org/10.1021/nn302818j

    Article  CAS  Google Scholar 

  43. Quan B, Jin A, Yu S-H, Kang SM, Jeong J, Abruña HD, Jin L, Piao Y, Sung Y-E (2018) Solvothermal-derived S-doped graphene as an anode material for sodium-ion batteries. Adv Sci 5(5):1700880–1700880. https://doi.org/10.1002/advs.201700880

    Article  CAS  Google Scholar 

  44. Kim BH, Choi Y, Kim JY, Shin H, Kim S, Son S-W, Kim SO, Kim P (2014) Wrinkle-directed self-assembly of block copolymers for aligning of nanowire arrays. Adv Mater 26(27):4665–4670. https://doi.org/10.1002/adma.201400804

    Article  CAS  Google Scholar 

  45. Zang J, Ryu S, Pugno N, Wang Q, Tu Q, Buehler MJ, Zhao X (2013) Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat Mater 12(4):321–325. https://doi.org/10.1038/nmat3542

    Article  CAS  Google Scholar 

  46. Kim H, Jang YR, Yoo J, Seo Y-S, Kim K-Y, Lee J-S, Park S-D, Kim C-J, Koo J (2014) Morphology control of surfactant-assisted graphene oxide films at the liquid–gas interface. Langmuir 30(8):2170–2177. https://doi.org/10.1021/la403255q

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Chungnam National University (2019–2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaseung Koo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 900kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, HS., Kim, J., Jo, KI. et al. Oriented wrinkle textures of free-standing graphene nanosheets: application as a high-performance lithium-ion battery anode. Carbon Lett. 31, 277–285 (2021). https://doi.org/10.1007/s42823-020-00163-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00163-9

Keywords

Navigation