Skip to main content
Log in

Entrapment of Bradysia paupera (Diptera: Sciaridae) by Phaseolus vulgaris (Fabaceae) plant leaf

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Flies of the genus Bradysia (Diptera, Sciaridae) are considered as major insect pests of greenhouse-grown horticultural crops. The ability of hooked trichomes of the French bean Phaseolus vulgaris to impale and entrap herbivorous insects thus resulting in insect reduced longevity, reproduction and larval mortality is well known. The present study investigates under laboratory conditions the ability of hooked trichomes of bean leaves to entrap fungus gnats Bradysia paupera, in order to estimate the reduction of their population. We characterized the entrapment mechanism of hooked trichomes towards B. paupera using cryo-scanning electron microscopy, and evaluated the silicon distribution in hooked trichomes with the energy dispersive X-ray microanalysis. We evaluated the trapping efficiency of hooked trichomes in fertilized and unfertilized bean plants towards B. paupera, in comparison with insects feeding on the plant leaf such as black bean aphid Aphis fabae and young stages of the southern green stinkbug Nezara viridula. For B. paupera, we recorded about 30% of entrapped insects in unfertilized plants. Considering the number of entrapped insects in relation to the leaf surface, the percentage of entrapped insect was higher in unfertilized than in fertilized plants having lower density of hooked trichomes. The presence of P. vulgaris plants in greenhouses could represent a useful method in integrated pest management to reduce Bradysia spp. population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bartlett GR, Keil CBO (1997) Identification and characterization of a permethrin resistance mechanism in populations of the fungus gnat Lycoriella mali (Fitch) (Diptera: Sciaridae). Pest Biochem Physiol 58:173–181

    Article  CAS  Google Scholar 

  • Biddinger DJ (1993) Toxicity, stage specificity, and sublethal effects of abamectin and several classes of insect growth regulators to Platynota idaeusalis (Lepidoptera: Tortricidae) and Stethorus punctum (Coleoptera: Coccinellidae). PhD. Dissertation, The Pennsylvania State University

  • Bogdandy S (1927) Ausrottung von Bettwanzen mit Bohnenblättern Naturwiss 15:474

    Google Scholar 

  • Bustamante J, Panzarino JF, Rupert TJ, Loudon C (2017) Forces to pierce cuticle of tarsi and material properties determined by nanoindentation: the Achilles’ heel of bed bugs. Biol Open 6:1541–1551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chabannes M, Hatt G, Thèbaud G, Bedford ID, Lamb C (2009) Establishment of an in vitro sciarid fly larvae assay to study plant resistance. Ann Appl Biol 155:293–296

    Article  Google Scholar 

  • Chambers RJ, Wright EM, Lind RJ (1993) Biological control of glasshouse sciarid flies (Bradysia spp.) with the predatory mite, Hypoaspis miles, on cyclamen and poinsettia. Biol Sci Technol 3:285–293

    Article  Google Scholar 

  • Cloyd RA (2015) Ecology of Fungus Gnats (Bradysia spp.) in greenhouse production systems associated with disease-interactions and alternative management strategies. Insects 6:325–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisner T, Eisner M, Hoebeke ER (1998) When defense backfires: detrimental effect of a plant’s protective trichomes on an insect beneficial to the plant. Proc Natl Acad Sci USA 95:4410–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Fluiter HJ, Ankersmit GW (1948) Gegevens betreffende de aantasting van bonen (Phaseolus vulgaris L.) door de zwarte bonenluis (Aphis (Dralis) fabae Scop.). Tijdsch Plantenziekten 54:1–13

    Google Scholar 

  • Fawzi TH, Kelly WC (1982) Cavity spot of carrots caused by feeding of fungus gnat larvae. J Am Soc Hortic Sci 107:1177–1181

    Google Scholar 

  • Freytag GF (1955) Variation of the common bean (Phaseolus vulgaris L.) in Central America. Ph.D. thesis. Washington Univ., St. Louis

  • Gepp VJ (1977) Hindrance of arthropods by trichomes of bean plants (Phaseolus vulgaris L.). Anz Schädlkd Pflanzenschutz Umweltschutz 50:8–12

    Article  Google Scholar 

  • Gouge DH, Hague NGM (1995) Glasshouse control of fungus gnats, Bradysia paupera, on fuchsias by Steinernema feltiae. Fund Appl Nematol 18:77–80

    Google Scholar 

  • Gilbert LE (1971) Butterfly-plant coevolution: has Passiflora adenopoda won the selectional race with Heliconiiine bufferflies? Science 172:585–586

    Article  CAS  PubMed  Google Scholar 

  • Gorb EV, Gorb SN (2009) Functional surfaces in the pitcher of the carnivorous plant Nepenthes alata: a cryo-SEM approach. In: Gorb SN (ed) Functional surfaces in biology—adhesion related phenomena, vol 2. Springer, Heidelberg, pp 205–238

    Chapter  Google Scholar 

  • Gorb EV (2002) Popov VL Gorb SN (2002) Natural hook-and-loop fasteners: anatomy, mechanical properties, and attachment force of the jointed hooks of the Galium aparine fruit. In: Brebbia CA, Sucharov LJ, Pascolo P (eds) Design and nature comparing design in nature with science and engineering. WIT Press, Southampton, pp 151–160

    Google Scholar 

  • Haberlandt G (1918) Physiologische Pflanzenanatomie, 5th edn. Engelmann, Leipzig

    Google Scholar 

  • Hamlen RA, Mead FW (1979) Fungus gnat larval control in greenhouse plant production. J Econ Entomol 72:269–271

    Article  Google Scholar 

  • Harris MA, Gardner WA, Oetting RD (1996) A review of the scientific literature on fungus gnats (Diptera: Sciaridae) in the genus Bradysia. J Entomol Sci 31:252–276

    Article  Google Scholar 

  • Harris MA, Oetting RD, Gardner WA (1995) Use of entomopathogenic nematodes and a new monitoring technique for control of fungus gnats, Bradysia coprophila (Diptera: Sciaridae), in floriculture. Biol Control 5:412–418

    Article  Google Scholar 

  • Hely PC (1945) Fruit flies (Strumeta tryonii) trapped by bean leaves. Agric Gaz NSW 56:22–23

    Google Scholar 

  • Jarvis WR, Shipp JL, Gardiner RB (1993) Transmission of Pythium aphanidermatum to greenhouse cucumber by the fungus gnat Bradysia impatiens (Diptera: Sciaridae). Ann Appl Biol 122:23–29

    Article  Google Scholar 

  • Johnson B (1953) The injurious effects of the hooked epidermal hairs of French beans (Phaseolus vulgaris L.) on Aphis craccivora Koch. Bull Entomol Res 44:779–788

    Article  Google Scholar 

  • Juniper BE, Southwood TRE (1986) Insects and the plant surface. Edward Arnold Publishers Ltd., London

    Google Scholar 

  • Kavousi A, Chi H, Talebi K, Bandani A, Ashouri A, Naveh VH (2009) Demographic traits of Tetranychus urticae (Acari: Tetranychidae) on leaf discs and whole leaves. J Econ Entomol 102:595–601

    Article  PubMed  Google Scholar 

  • Kennedy MK (1974) Survival and development of Bradysia impatiens (Diptera: Sciaridae) on fungal and non-fungal food sources. Ann Entomol Soc Am 67:745–749

    Article  Google Scholar 

  • Levin DA (1973) The role of trichomes in plant defense. Q Rev Biol 48:3–15

    Article  Google Scholar 

  • Lindquist RK, Faber WR, Casey ML (1985) Effect of various soilless root media and insecticides on fungus gnats. Hortic Sci 20:358–360

    CAS  Google Scholar 

  • McKinney KB (1938) Physical characteristics of the foliage of beans and tomatoes that tend to control some small insects. J Econ Entomol 31:630–631

    Article  Google Scholar 

  • Pillemer EA, Tingey WM (1976) Hooked trichomes: a physical plant barrier to a major agricultural pest. Science 193:482–484

    Article  CAS  PubMed  Google Scholar 

  • Pillemer EA, Tingey WM (1978) Hooked trichomes and resistance of Phaseolus vulgaris to Empoasca fabae (Harris). Entomol Exp Appl 24:83–94

    Article  Google Scholar 

  • Poos FW, Smith FF (1931) A comparison of oviposition and nymphal development of Empoasca fabae (Harris) on different host plants. J Econ Ent 24:361–371

    Article  Google Scholar 

  • Putman WL (1955) Bionomics of Stethorus punctillum Weise (Coleoptera: Coccinellidae) in Ontario. Can Entomol 87:9–33

    Article  Google Scholar 

  • Quiring DT, Timmins PR, Park SJ (1992) Effect of variations in hooked trichome density of Phaseolus vulgaris on longevity of Liriomyza tifolii (Diptera: Agromyzidae) adults. Environ Entomol 21:1357–1361

    Article  Google Scholar 

  • Rebora M, Michels J, Salerno G, Heepe L, Gorb EV, Gorb SN (2018) Tarsal attachment devices of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). J Morphol 279(5):660–672

    Article  CAS  PubMed  Google Scholar 

  • Ricci C, Cappelletti G (1988) Relationship between some morphological structures and locomotion of Clitostethus arcuata Rossi (Coleoptera: Coccinellidae), a whitefly predator. Frustula Entomol 11:195–202

    Google Scholar 

  • Richardson HH (1943) The action of bean leaves against the bedbug. J Econ Entomol 36:543–545

    Article  Google Scholar 

  • Riddick EW, Simmons AM (2014) Do plant trichomes cause more harm than good to predatory insects? Pest Manag Sci 70:1655–1665

    Article  CAS  PubMed  Google Scholar 

  • Riddick EW, Wu Z (2011) Lima bean–lady beetle interactions: hooked trichomes affect survival of Stethorus punctillum larvae. Biocontrol 56:55–63

    Article  Google Scholar 

  • Rogers DJ (1979) Host plant resistance of Ophyiomyia phaseoli (Diptera: Agromyzidae) in Phaseolus vulgaris. J Aust Entomol Soc 18:245–250

    Article  Google Scholar 

  • Salerno G, Rebora M, Gorb EV, Gorb SN (2018) Attachment ability of the polyphagous bug Nezara viridula (Heteroptera: Pentatomidae) to different host plant surfaces. Sci Rep 8:10975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengonca C, Gerlach S (1984) Einfluss der Blattoberfläche auf die Wirksamkeit des räuberischen thrips, Scolothrips longicornis (Thysan: Thripidae). Entomophaga 29:55–61

    Article  Google Scholar 

  • Shah MA (1982) The influence of plant surfaces on the searching behaviour of coccinellid larvae. Entomol Exp Appl 31:377–380

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1998) Biometry. New York, W.E, Freeman and Company

    Google Scholar 

  • StatSoft Inc (2001) Statistica (Data Analysis Software System), Version 6. StatSoft Italia S.r.l, Italy

    Google Scholar 

  • Stenglein SA, Arambarri MA, Vizgarra ON, Balatti PA (2004) Micromorphological variability of leaf epidermis in Mesoamerican common bean (Phaseolus vulgaris, Leguminosae). Aust J Bot 52:73–80

    Article  Google Scholar 

  • Szyndler MW, Haynes KF, Potter MF, Corn RM, Loudon C (2013) Entrapment of bed bugs by leaf trichomes inspires microfabrication of biomimetic surfaces. J R Soc Interface 10:20130174

    Article  PubMed  PubMed Central  Google Scholar 

  • Trouvelot B, Thenard J (1931) Remarques sur les éléments des végétaux contributant à limiter ou à empecher la pullulation du Leptinotarsa decemlineata sur de nombreuses espèces ou races végétales. Rev Path Vég Ent agric 18:277–285

    Google Scholar 

  • Vermeij GJ (2015) Plants that lead: do some surface features direct enemy traffic on leaves and stems? Biol J Linn Soc 116:288–294

    Article  Google Scholar 

  • Voigt D, Gorb SN (2010) Egg attachment of the asparagus beetle Crioceris asparagi to the crystalline waxy surface of Asparagus officinalis. Proc R Soc B 277:895–903

    Article  PubMed  Google Scholar 

  • Voigt D, Gorb E, Gorb S (2007) Plant surface–bug interactions: Dicyphus errans stalking along trichomes. Arthropod Plant Interact 1:221–243

    Article  Google Scholar 

  • Walters PJ (1974) A method for culturing Stethorus spp. (Coleoptera: Coccinellidae) on Tetranychus urticae (Koch) (Acarina: Tetranychidae). J Austral Entomol Soc 13:245–246

    Article  Google Scholar 

  • Wilkinson JD, Daugherty DM (1970) The biology and immature stages of Bradysia impatiens (Diptera: Sciaridae). Ann Entomol Soc Am 63:656–660

    Article  Google Scholar 

  • Xing Z, Liu Y, Cai W, Huang X, Wu S, Lei Z (2017) Efficiency of trichome-based plant defense in Phaseolus vulgaris depends on insect behavior, plant ontogeny, and structure. Front Plant Sci 8:2006

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Leonardo Giontella, Federica Pietrelli and Chiara Rossetti for their help in the entrapping experiments. This study was funded by the European Cooperation in Science and Technology, ENBA COST Action CA15216, STSM Grant (ECOST-STSM-CA15216-41582).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Rebora.

Additional information

Handling Editor: Dagmar Voigt and Heikki Hokkanen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebora, M., Salerno, G., Piersanti, S. et al. Entrapment of Bradysia paupera (Diptera: Sciaridae) by Phaseolus vulgaris (Fabaceae) plant leaf. Arthropod-Plant Interactions 14, 499–509 (2020). https://doi.org/10.1007/s11829-020-09760-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-020-09760-x

Keywords

Navigation