Skip to main content

Advertisement

Log in

Mechanism insight of dual synergistic effects of plasmonic Pd-SrTiO3 for enhanced solar energy photocatalysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study presents the integration of UV-active semiconductor with plasmonic noble metal nanoparticles for enhanced solar energy photocatalysis. Nanocubes strontium titanate (SrTiO3) is synthesized via a simple hydrothermal process. Then palladium (Pd) nanoparticles will be deposited onto the surface of SrTiO3 by simple photochemical deposition route. The deposition of plasmonic Pd nanoparticles significantly increased the light absorption, especially in visible and near-infrared region and enhanced charge separation efficiency. The photocatalytic performance of Pd-deposited SrTiO3 is assessed by photodegradation of bisphenol A (BPA) and 4-chlorophenol (4CP) under solar light. The results confirm that the existence of Pd nanoparticles in SrTiO3 has improved the photocatalysis efficiency compared to pure SrTiO3. The higher weight percentage of Pd loading achieved better photocatalytic performance compared to lower weight percentage of Pd loading. This improvement can be deduced from the dual localized surface plasmon resonance effects that led to higher photoresponse and generation of free electrons. Moreover, the existence of Pd nanoparticles further retards the recombination rate of electron and hole pairs. This leads to the excess presence of electrons that contributed to the formation of active radicals that enhanced the oxidation of BPA and 4CP. Thus, this study will provide a new mechanism insight and approach to modify visible and near-infrared light-driven photocatalysts in degrading various organic pollutants.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O. Tsydenova, V. Batoev, A. Batoeva, Int. J. Environ. Res. Public Health 12, 9542–9561 (2015)

    Article  Google Scholar 

  2. D.S. Bhatkhande, V.G. Pangarkar, A.A. Beenackers, J. Chem. Technol. Biot. 77, 102–116 (2002)

    Article  Google Scholar 

  3. M.M. Bello, A.A. Raman, Environ. Chem. Lett. 17, 1125–1142 (2019)

    Article  Google Scholar 

  4. X. Li, Z. Ge, F. Xue, H. Liu, B. Lyu, M. Liu, Mater. Res. Bull. 123, 110722 (2020)

    Article  Google Scholar 

  5. P. Kanhere, C. Zhong, Molecules 19, 19995–20022 (2014)

    Article  Google Scholar 

  6. J. Shi, S. Shen, Y. Chen, L. Guo, S.S. Mao, Opt. Express 20, A351–A359 (2012)

    Article  ADS  Google Scholar 

  7. X.P. Wu, L. Gagliardi, D.G. Truhlar, J. Chem. Phys. 150, 041701 (2019)

    Article  ADS  Google Scholar 

  8. M.Q. Yang, L. Shen, Y. Lu, S.W. Chee, X. Lu, X. Chi, Z. Chen, Q.H. Xu, U. Mirsaidov, G.W. Ho, Angew. Chem. Int. Ed. 58, 3077–3081 (2019)

    Article  Google Scholar 

  9. L. Ma, T. Sun, H. Cai, Z.Q. Zhou, J. Sun, M. Lu, J. Chem. Phys. 143, 084706 (2015)

    Article  ADS  Google Scholar 

  10. M. Xie M, T. Zhang, J. Mater. Sci. 55, 3974–3990 (2020).

  11. J. Xu, Y. Wei, Y. Huang, J. Wang, X. Zheng, Z. Sun, L. Fan, J. Wu, Ceram. Int. 40, 10583–10591 (2014)

    Article  Google Scholar 

  12. Q. Zhang, Y. Huang, L. Xu, J.J. Cao, W. Ho, S.C. Lee, ACS Appl. Mater. Inter. 8, 4165–4174 (2016)

    Article  Google Scholar 

  13. W. Yang, J. Chen, Y. Zhang, Y. Zhang, J.H. He, X. Fang, Adv. Funct. Mater. 29, 1808182 (2019)

    Article  Google Scholar 

  14. F. Teng, K. Hu, W. Ouyang, X. Fang, Adv. Mater. 30, 1706262 (2018)

    Article  Google Scholar 

  15. M.Q. Yang, M. Gao, M. Hong, G.W. Ho, Adv. Mater. 30, 1802894 (2018)

    Article  Google Scholar 

  16. H.C. Fu, V. Ramalingam, H. Kim, C.H. Lin, X. Fang, H.N. Alshareef, J.H. He, Adv. Energy Mater. 9, 1900180 (2019)

    Article  Google Scholar 

  17. W.L. Ong, Y.F. Lim, J.L.T. Ong, G.W. Ho, J. Mater. Chem. A 3, 6509–6516 (2015)

    Article  Google Scholar 

  18. S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Water Res. 38, 3001–3008 (2004)

    Article  Google Scholar 

  19. W. Yang, H. Shen, H. Min, J. Ge, J. Mater. Sci. 55, 701–712 (2020)

    Article  ADS  Google Scholar 

  20. H.P. Wang, D. Periyanagounder, A.C. Li, J.H. He, IEEE Access 7, 19395–19400 (2018)

    Article  Google Scholar 

  21. S. Das, M.J. Hossain, S.F. Leung, A. Lenox, Y. Jung, K. Davis, J.H. He, T. Roy, Nano Energy 58, 47–56 (2019)

    Article  Google Scholar 

  22. P. Ribao, M.J. Rivero, I. Ortiz, Environ. Sci. Pollut. Res. 24, 12628–12637 (2017)

    Article  Google Scholar 

  23. J.F. Gomes, A. Lopes, K. Bednarczyk, M. Gmurek, M. Stelmachowski, A. Zaleska-Medynska, M.E. Quinta-Ferreira, R. Costa, R.M. Quinta-Ferreira, R.C. Martins, ChemEngineering 2, 4 (2018)

    Article  Google Scholar 

  24. S.T. Huang, W.W. Lee, J.L. Chang, W.S. Huang, S.Y. Chou, C.C. Chen, J. Taiwan Inst. Chem. Eng. 45, 1927–1936 (2014)

    Article  Google Scholar 

  25. L.F. Silva, O.F. Lopes, V.R. Mendonça, K.T. Carvalho, E. Longo, C. Ribeiro, V.R. Mastelaro, Photochem. Photobiol. 92, 371–378 (2016)

    Article  Google Scholar 

  26. N.X. Huy, D.T.T. Phuong, N. Van Minh, Phys. B 532, 37–41 (2018)

    Article  ADS  Google Scholar 

  27. M.L. Moreira, V.M. Longo, W. Avansi Jr., M.M. Ferrer, J. Andres, V.R. Mastelaro, J.A. Varela, E. Longo, J. Phys. Chem. C 116, 24792–24808 (2012)

    Article  Google Scholar 

  28. W.Y. Qian, D.M. Sun, R.R. Zhu, X.L. Du, H. Liu, S.L. Wang, Int. J. Nanomed. 7, 5781–5792 (2012)

    Google Scholar 

  29. E. Grabowska, M. Marchelek, T. Klimczuk, W. Lisowski, A. Zaleska-Medynska, J. Catal. 350, 159–173 (2017)

    Article  Google Scholar 

  30. S. Navaladian, B. Viswanathan, T.K. Varadarajan, R.P. Viswanath, Nanoscale Res. Lett. 4, 181 (2009)

    Article  ADS  Google Scholar 

  31. H.R. Nodeh, H. Sereshti, RSC Adv. 6, 89953–89965 (2016)

    Article  Google Scholar 

  32. S. Shahabuddin, N.M. Sarih, S. Mohamad, J.J. Ching, Polymers 8, 27 (2016)

    Article  Google Scholar 

  33. J. Tang, Y. Zuo, Corros. Sci. 50, 2873–2878 (2008)

    Article  Google Scholar 

  34. X. Yue, J. Zhang, F. Yan, X. Wang, F. Huang, Appl. Surf. Sci. 319, 68–74 (2014)

    Article  ADS  Google Scholar 

  35. G. Wu, L. Xiao, W. Gu, W. Shi, D. Jiang, C. Liu, RSC Adv. 6, 19878–19886 (2016)

    Article  Google Scholar 

  36. D. Yang, X. Zhao, X. Zou, Z. Zhou, Z. Jiang, Chemosphere 215, 586–595 (2019)

    Article  ADS  Google Scholar 

  37. C.H. Chang, Y.H. Shen, Mater. Lett. 60, 129–132 (2006)

    Article  Google Scholar 

  38. Z. Wu, Y. Zhang, X. Wang, Z. Zou, N. J. Chem. 41, 5678–5687 (2017)

    Article  Google Scholar 

  39. H. Chu, X. Liu, J. Liu, J. Li, T. Wu, H. Li, W. Lei, Y. Xu, L. Pan, Mater. Sci. Eng. B 211, 128–134 (2016)

    Article  Google Scholar 

  40. K. Zhang, Y. Liu, J. Deng, S. Xie, X. Zhao, J. Yang, Z. Han, H. Dai, Appl. Catal. B-Environ. 224, 350–359 (2018)

    Article  Google Scholar 

  41. R.B.P. Marcelino, C.C. Amorim, Environ. Sci. Pollut. R 26, 4155–4170 (2019)

    Article  Google Scholar 

  42. A. Gołąbiewska, W. Lisowski, M. Jarek, G. Nowaczyk, A. Zielińska-Jurek, A. Zaleska, Appl. Surf. Sci. 317, 1131–1142 (2014)

    Article  ADS  Google Scholar 

  43. A. Zaleska-Medynska, M. Marchelek, M. Diak, E. Grabowska, Adv. Colloid Interface 229, 80–107 (2016)

    Article  Google Scholar 

  44. S. Qu, Y. Xiong, J. Zhang, Sep. Purif. Technol. 210, 382–389 (2019)

    Article  Google Scholar 

  45. K.H. Leong, Z.Z. Tan, L.C. Sim, P. Saravanan, D. Bahnemann, M. Jang, ChemistrySelect 2, 84–89 (2017)

    Article  Google Scholar 

  46. K.H. Leong, H.Y. Chu, S. Ibrahim, P. Saravanan, Beilstein J. Nanotech. 6, 428–437 (2015)

    Article  Google Scholar 

  47. R. Long, K. Mao, M. Gong, S. Zhou, J. Hu, M. Zhi, Y. You, S. Bai, J. Jiang, Q. Zhang, X. Wu, Angew. Chem. 53, 3205–3209 (2014)

    Article  Google Scholar 

  48. M.R. Khan, T.W. Chuan, A. Yousuf, M.N.K. Chowdhury, C.K. Cheng, Catal. Sci. Technol. 5, 2522–2531 (2015)

    Article  Google Scholar 

  49. M. Nasrollahzadeh, S.M. Sajadi, J. Colloid Interface Sci. 465, 121–127 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Universiti Tunku Abdul Rahman Research Fund, UTARRF (IPSR/RMC/UTARRF/2018-C2/L03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kah Hon Leong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, P.F., Leong, K.H., Sim, L.C. et al. Mechanism insight of dual synergistic effects of plasmonic Pd-SrTiO3 for enhanced solar energy photocatalysis. Appl. Phys. A 126, 550 (2020). https://doi.org/10.1007/s00339-020-03739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03739-4

Keywords

Navigation