Skip to main content
Log in

Facile and Low-Cost Fabrication of a Thread/Paper-Based Wearable System for Simultaneous Detection of Lactate and pH in Human Sweat

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Wearable devices have received tremendous interests in human sweat analysis in the past few years. However, the widely used polymeric substrates and the layer-by-layer stacking structures greatly influence the cost-efficiency, conformability and breathability of the devices, further hindering their practical applications. Herein, we report a facile and low-cost strategy for the fabrication of a skin-friendly thread/paper-based wearable system consisting of a sweat reservoir and a multi-sensing component for simultaneous in situ analysis of sweat pH and lactate. In the system, hydrophilic silk thread serves as the micro-channel to guide the liquid flow. Filter papers were functionalized to prepare colorimetric sensors for lactate and pH. The smartphone-based quantitative analysis shows that the sensors are sensitive and reliable. Although pH may interfere the lactate detection, the pH detected simultaneously could be employed to correct the measured data for the achievement of a precise lactate level. After being integrated with a hydrophobic arm guard, the system was successfully used for the on-body measurement of pH and lactate in the sweats secreted from the volunteers. This low-cost, easy-to-fabricate, light-weight and flexible thread/paper-based microfluidic sensing device may hold great potentials as a wearable system in human sweat analysis and point-of-care diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu Y, Pharr M, Salvatore GA. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano. 2017;11:9614.

    CAS  Google Scholar 

  2. Mao C, Zhang H, Lu Z. Flexible and wearable electronic silk fabrics for human physiological monitoring. Smart Mater Struct. 2017;26:095033.

    Google Scholar 

  3. Li B, Xiao G, Liu F, Qiao Y, Li CM, Lu Z. A flexible humidity sensor based on silk fabrics for human respiration monitoring. J Mater Chem C. 2018;6:4549.

    CAS  Google Scholar 

  4. Yang Y, Gao W. Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev. 2019;48:1465.

    CAS  Google Scholar 

  5. Derbyshire PJ, Barr H, Davis F, Higson SP. Lactate in human sweat: a critical review of research to the present day. J Physiol Sci. 2012;62:429.

    CAS  Google Scholar 

  6. Alam F, RoyChoudhury S, Jalal AH, Umasankar Y, Forouzanfar S, Akter N, Bhansali S, Pala N. Lactate biosensing: the emerging point-of-care and personal health monitoring. Biosens Bioelectron. 2018;117:818.

    CAS  Google Scholar 

  7. Anastasova S, Crewther B, Bembnowicz P, Curto V, Ip HM, Rosa B, Yang GZ. A wearable multisensing patch for continuous sweat monitoring. Biosens Bioelectron. 2017;93:139.

    CAS  Google Scholar 

  8. Lee HB, Meeseepong M, Trung T, Kim BY, Lee NE. A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat. Biosens Bioelectron. 2020;156:112133.

    CAS  Google Scholar 

  9. Choi J, Bandodkar AJ, Reeder JT, Ray TR, Turnquist A, Kim SB, Nyberg N, Hourlier-Fargette A, Model JB, Aranyosi AJ, Xu S, Ghaffari R, Rogers JA. Soft, skin-integrated multifunctional microfluidic systems for accurate colorimetric analysis of sweat biomarkers and temperature. ACS Sens. 2019;4:379.

    CAS  Google Scholar 

  10. Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien D-H, Brooks GA, Davis RW, Javey A. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature. 2016;529:509.

    CAS  Google Scholar 

  11. Tai L-C, Gao W, Chao M, Bariya M, Ngo QP, Shahpar Z, Nyein HYY, Park H, Sun J, Jung Y, Wu E, Fahad HM, Lien D-H, Ota H, Cho G, Javey A. Methylxanthine drug monitoring with wearable sweat sensors. Adv Mater. 2018;30:1707442.

    Google Scholar 

  12. Koh A, Kang D, Xue Y, Lee S, Pielak RM, Kim J, Hwang T, Min S, Banks A, Bastien P, Manco MC, Wang L, Ammann KR, Jang K-I, Won P, Han S, Ghaffari R, Paik U, Slepian MJ, Balooch G, Huang Y, Rogers JA. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci Transl Med. 2016;8:366ra165.

    Google Scholar 

  13. Xiao J, Liu Y, Su L, Zhao D, Zhao L, Zhang X. Microfluidic chip-based wearable colorimetric sensor for simple and facile detection of sweat glucose. Anal Chem. 2019;91:14803.

    CAS  Google Scholar 

  14. Zhang Y, Guo H, Kim SB, Wu Y, Ostojich D, Park SH, Wang X, Weng Z, Li R, Bandodkar AJ, Sekine Y, Choi J, Xu S, Quaggin S, Ghaffari R, Rogers JA. Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab Chip. 2019;19:1545.

    CAS  Google Scholar 

  15. Sekine Y, Kim SB, Zhang Y, Bandodkar AJ, Xu S, Choi J, Irie M, Ray TR, Kohli P, Kozai N, Sugita T, Wu Y, Lee K, Lee K-T, Ghaffari R, Rogers JA. A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry. Lab Chip. 2018;18:2178.

    CAS  Google Scholar 

  16. Martín A, Kim J, Kurniawan JF, Sempionatto JR, Moreto JR, Tang G, Campbell AS, Shin A, Lee MY, Liu X, Wang J. Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection. ACS Sens. 2017;2:1860.

    Google Scholar 

  17. Lin H, Zhao Y, Lin S, Wang B, Yeung C, Cheng X, Wang Z, Cai T, Yu W, King K, Tan J, Salahi K, Hojaiji H, Emaminejad S. A rapid and low-cost fabrication and integration scheme to render 3D microfluidic architectures for wearable biofluid sampling, manipulation, and sensing. Lab Chip. 2019;19:2844.

    CAS  Google Scholar 

  18. Weng X, Kang Y, Guo Q, Peng B, Jiang H. Recent advances in thread-based microfluidics for diagnostic applications. Biosens Bioelectron. 2019;132:171.

    CAS  Google Scholar 

  19. Tian T, Li J, Song Y, Zhou L, Zhu Z, Yang CJ. Distance-based microfluidic quantitative detection methods for point-of-care testing. Lab Chip. 2016;16:1139.

    CAS  Google Scholar 

  20. Cabot JM, Breadmore MC, Paull B. Thread based electrofluidic platform for direct metabolite analysis in complex samples. Anal Chim Acta. 2018;1000:283.

    CAS  Google Scholar 

  21. Mousavi MPS, Ainla A, Tan EKW, Abd El-Rahman M, Yoshida Y, Yuan L, Sigurslid HH, Arkan N, Yip MC, Abrahamsson CK, Homer-Vanniasinkam S, Whitesides GM. Ion sensing with thread-based potentiometric electrodes. Lab Chip. 2018;18:2279.

    CAS  Google Scholar 

  22. Agustini D, Bergamini MF, Marcolino-Junior LH. Tear glucose detection combining microfluidic thread based device, amperometric biosensor and microflow injection analysis. Biosens Bioelectron. 2017;98:161.

    CAS  Google Scholar 

  23. Reches M, Mirica KA, Dasgupta R, Dickey MD, Butte MJ, Whitesides GM. Thread as a matrix for biomedical assays. ACS Appl Mater Inter. 2010;2:1722.

    CAS  Google Scholar 

  24. Ulum MF, Maylina L, Noviana D, Wicaksono DHB. EDTA-treated cotton-thread microfluidic device used for one-step whole blood plasma separation and assay. Lab Chip. 2016;16:1492.

    CAS  Google Scholar 

  25. Ramesan S, Rezk AR, Cheng KW, Chan PPY, Yeo LY. Acoustically-driven thread-based tuneable gradient generators. Lab Chip. 2016;16:2820.

    CAS  Google Scholar 

  26. Safavieh R, Zhou GZ, Juncker D. Microfluidics made of yarns and knots: from fundamental properties to simple networks and operations. Lab Chip. 2011;11:2618.

    CAS  Google Scholar 

  27. Erenas MM, Carrillo-Aguilera B, Cantrell K, Gonzalez-Chocano S, Perez de Vargas-Sansalvador IM, de Orbe-Payá I, Capitan-Vallvey LF. Real time monitoring of glucose in whole blood by smartphone. Biosens Bioelectron. 2019;136:47.

    CAS  Google Scholar 

  28. Mao X, Du T-E, Wang Y, Meng L. Disposable dry-reagent cotton thread-based point-of-care diagnosis devices for protein and nucleic acid test. Biosens Bioelectron. 2015;65:390.

    CAS  Google Scholar 

  29. Wu T, Xu T, Xu L-P, Huang Y, Shi W, Wen Y, Zhang X. Superhydrophilic cotton thread with temperature-dependent pattern for sensitive nucleic acid detection. Biosens Bioelectron. 2016;86:951.

    CAS  Google Scholar 

  30. Mostafalu P, Akbari M, Alberti KA, Xu Q, Khademhosseini A, Sonkusale SR. A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsyst Nanoeng. 2016;2:16039.

    Google Scholar 

  31. Xing S, Jiang J, Pan T. Interfacial microfluidic transport on micropatterned superhydrophobic textile. Lab Chip. 2013;13:1937.

    CAS  Google Scholar 

  32. Curto VF, Coyle S, Byrne R, Angelov N, Diamond D, Benito-Lopez F. Concept and development of an autonomous wearable micro-fluidic platform for real time pH sweat analysis. Sens Actuators B Chem. 2012;175:263.

    CAS  Google Scholar 

  33. Gonzalez A, Estala L, Gaines M, Gomez FA. Mixed thread/paper-based microfluidic chips as a platform for glucose assays. Electroanalysis. 2016;37:1685.

    CAS  Google Scholar 

  34. Li X, Tian J, Shen W. Thread as a versatile material for low-cost microfluidic diagnostics. ACS Appl Mater Inter. 2010;2:1.

    Google Scholar 

  35. Xiao G, He J, Chen X, Qiao Y, Wang F, Xia Q, Yu L, Lu Z. A wearable, cotton thread/paper-based microfluidic device coupled with smartphone for sweat glucose sensing. Cellulose. 2019;26:4553.

    CAS  Google Scholar 

  36. Curto VF, Fay C, Coyle S, Byrne R, O’Toole C, Barry C, Hughes S, Moyna N, Diamond D, Benito-Lopez F. Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids. Sens Actuators B Chem. 2012;171–172:1327.

    Google Scholar 

  37. Heyningen R, Weiner JS. A comparison of arm-bag sweat and body sweat. J Physiol. 1952;116:395.

    Google Scholar 

  38. Matzeu G, Fay C, Vaillant A, Coyle S, Diamond D. A wearable device for monitoring sweat rates via image analysis. IEEE Trans Biomed Eng. 2016;63:1672.

    Google Scholar 

  39. Lee H, Song C, Hong YS, Kim MS, Cho HR, Kang T, Shin K, Choi SH, Hyeon T, Kim D-H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv. 2017;3:e1601314.

    Google Scholar 

  40. RoyChoudhury S, Umasankar Y, Hutcheson JD, Lev-Tov HA, Kirsner RS, Bhansali S. Uricase based enzymatic biosensor for non-invasive detection of uric acid by entrapment in PVA-SbQ polymer matrix. Electroanalysis. 2018;30:2374.

    CAS  Google Scholar 

  41. Bariya M, Nyein HYY, Javey A. Wearable sweat sensors. Nat Electron. 2018;1:160.

    Google Scholar 

  42. Ballerini DR, Li X, Shen W. Flow control concepts for thread-based microfluidic devices. Biomicrofluidics. 2011;5:14105.

    Google Scholar 

  43. Almoughni H, Gong H. Capillary flow of liquid water through yarns: a theoretical model. Text Res J. 2015;85:722.

    CAS  Google Scholar 

  44. Mu X, Xin X, Fan C, Li X, Tian X, Xu KF, Zheng Z. A paper-based skin patch for the diagnostic screening of cystic fibrosis. Chem Commun. 2015;51:6365.

    CAS  Google Scholar 

  45. Caldara M, Colleoni C, Guido E, Re V, Rosace G. Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating. Sens Actuators B Chem. 2016;222:213.

    CAS  Google Scholar 

  46. He X, Xu T, Gu Z, Gao W, Xu L-P, Pan T, Zhang X. Flexible and superwettable bands as a platform toward sweat sampling and sensing. Anal Chem. 2019;91:4296.

    CAS  Google Scholar 

  47. Bandodkar AJ, Gutruf P, Choi J, Lee KH, Sekine YJ, Reeder T, Jeang WJ, Aranyosi AJ, Lee SP, Model JB, Ghaffari R, Su CJ, Leshock JP, Ray T, Verrillo A, Thomas K, Krishnamurthi V, Han S, Kim J, Krishnan S, Hang T, Rogers JA. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci Adv. 2019;5:eaav3294.

    Google Scholar 

  48. Promphet N, Rattanawaleedirojn P, Siralertmukul K, Soatthiyanon N, Potiyaraj P, Thanawattano C, Hinestroza JP, Rodthongkum N. Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat pH and lactate. Talanta. 2019;192:424.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Chongqing Natural Science Foundation (cstc2019jcyj-msxmX0314), Fundamental Research Funds for the Central Universities (XDJK2019B002) and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Yu or Zhisong Lu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, G., He, J., Qiao, Y. et al. Facile and Low-Cost Fabrication of a Thread/Paper-Based Wearable System for Simultaneous Detection of Lactate and pH in Human Sweat. Adv. Fiber Mater. 2, 265–278 (2020). https://doi.org/10.1007/s42765-020-00046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00046-8

Keywords

Navigation