Skip to main content
Log in

Evolution of Annealing Twins and Recrystallization Texture in Thin-Walled Copper Tube During Heat Treatment

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Thin-walled copper tubes are usually produced by multi-pass float-plug drawing deformation. In general, the annealing treatment subsequently is necessary to release the stored energy and adjusts the microstructure. In this study, an investigation on the evolution of annealing twins as well as textures in the thin-walled (Ф6 mm × 0.3 mm) copper tube underwent holding time-free heat treatment was reported. Electron backscattered diffraction analysis reveals that a large number of Σ3 boundaries (60° 〈111〉 twin relationship) are produced at the early stage of heat treatment, which is due to the lower boundary energy. With the recrystallization proceeding, the migration rate of grain boundaries decreases on account of the grain growth; meanwhile, the unique Σ9 boundaries (38.9° 〈110〉 relationship) are formed due to the interaction of the Σ3 boundaries. As a result, the number fractions of Σ3 boundaries and high-angle grain boundaries decrease rapidly. During the grain growth stage, a strong recrystallization texture was formed due to the fact that the grains of Goss orientation have a growth advantage over the others. As a result, the initial copper texture was transferred into the Goss texture in domination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.C.H. Carpenter, S. Tamura, Proc. R. Soc. Lond. A 113, 28 (1926)

    CAS  Google Scholar 

  2. D. Field, L. Bradford, M. Nowell, T. Lillo, Acta Mater. 55, 4233 (2007)

    CAS  Google Scholar 

  3. T.H. Chuang, H.C. Wang, C.H. Tsai, C.C. Chang, C.H. Chuang, J.D. Lee, H.H. Tsai, Scr. Mater. 67, 605 (2012)

    CAS  Google Scholar 

  4. B. Lin, Y. Jin, C.M. Hefferan, S.F. Li, J. Lind, R.M. Suter, M. Bernacki, N. Bozzolo, A.D. Rollett, G.S. Rohrer, Acta Mater. 99, 63 (2015)

    CAS  Google Scholar 

  5. D.G. Brandon, Acta Mater. 14, 1479 (1966)

    CAS  Google Scholar 

  6. V. Randle, Acta Mater. 52, 4067 (2004)

    CAS  Google Scholar 

  7. V. Randle, Mater. Sci. Technol. 26, 774 (2010)

    CAS  Google Scholar 

  8. T. Watanabe, J. Mater. Sci. 46, 4095 (2011)

    CAS  Google Scholar 

  9. K. Lu, L. Lu, S. Suresh, Science 324, 349 (2009)

    CAS  Google Scholar 

  10. C.A. Stein, A. Cerrone, T. Ozturk, S. Lee, P. Kenesei, H. Tucker, R. Pokharel, J. Lind, C. Hefferan, R.M. Suter, A.R. Ingraffea, A.D. Rollett, Curr. Opin. Solid St. M. 18, 244 (2014)

    CAS  Google Scholar 

  11. E.A. Holm, S.M. Foiles, Science 328, 1138 (2010)

    CAS  Google Scholar 

  12. W.G. Burgers, C.G. Dunn, F. Lionetti, A.J. Shaler, L.D. Jaffe, Trans. AIMME 185, 860 (1949)

    Google Scholar 

  13. W.G. Burgers, J.C. Meijs, T.J. Tiedema, Acta Mater. 1, 75 (1953)

    CAS  Google Scholar 

  14. S. Dash, N. Brown, Acta Mater. 11, 1067 (1963)

    CAS  Google Scholar 

  15. H. Gleiter, Acta Mater. 17, 1421 (1969)

    CAS  Google Scholar 

  16. S. Mahajan, C.S. Pande, M.A. Imam, B.B. Rath, Acta Mater. 45, 2633 (1997)

    CAS  Google Scholar 

  17. C.S. Pande, M.A. Imam, B.B. Rath, Met. Trans. A 21, 2891 (1990)

    Google Scholar 

  18. R.L. Fullman, J.C. Fisher, J. Appl. Phys. 22, 1350 (1951)

    CAS  Google Scholar 

  19. P.J. Goodhew, Metal Sci. 13, 108 (1979)

    CAS  Google Scholar 

  20. M.A. Meyers, L.E. Murr, Acta Mater. 26, 951 (1978)

    CAS  Google Scholar 

  21. L.E. Murr, J. Appl. Phys. 39, 5557 (1968)

    CAS  Google Scholar 

  22. X.P. Chen, L.F. Li, H.F. Sun, L.X. Wang, Q. Liu, Mater. Sci. Eng., A 622, 108 (2015)

    CAS  Google Scholar 

  23. X.M. Chen, Y.C. Lin, F. Wu, J. Alloys Compd. 724, 198 (2017)

    CAS  Google Scholar 

  24. W. Wang, S. Lartigue-Korinek, F. Brisset, A.L. Helbert, J. Bourgon, T. Baudin, J. Mater. Sci. 50, 2167 (2014)

    Google Scholar 

  25. E. Niloofar, Z.H. Abbas, S. Amirali, A.L. Helbert, B. Thierry, Adv. Eng. Mater. 20, 1700928 (2018)

    Google Scholar 

  26. S. Suwas, R.K. Ray, Crystallographic Texture of Materials, 1st edn. (Brian Derby, Manchester, 2014)

    Google Scholar 

  27. C.F. Gu, L.S. Toth, Y.D. Zhang, M. Hoffman, Scr. Mater. 51, 92 (2014)

    Google Scholar 

  28. J.J. Sidor, L.A.I. Kestens, Scr. Mater. 273, 68 (2013)

    Google Scholar 

  29. Z.N. Mao, R.C. Gu, F. Liu, Y. Liu, X.Z. Liao, J.T. Wang, Mater. Sci. Eng., A 186, 674 (2016)

    Google Scholar 

  30. G. Anand, K. Barai, R. Madhavan, P.P. Chattopadhyay, Mater. Sci. Eng., A 114, 638 (2015)

    Google Scholar 

  31. L.F. Shuai, T.L. Huang, G.L. Wu, X. Huang, O.V. Mishin, J. Alloys Compd. 399, 749 (2018)

    Google Scholar 

  32. J.H. Choi, S.Y. Kang, D.N. Lee, J. Mater. Sci. 4055, 35 (2000)

    Google Scholar 

  33. T. Baudin, A.L. Etter, R. Penelle, Mater. Charact. 947, 58 (2007)

    Google Scholar 

  34. N.A. Hamdany, H.G. Brokmeier, M. Salih, Z.Y. Zhong, B. Schwebke, N. Schell, W. Gan, Mater. Charact. 125, 139 (2018)

    Google Scholar 

  35. S.W. Wang, S.H. Zhang, H.W. Song, Y. Chen, Chin. J. Nonferrous Met. 4, 782 (2019)

    Google Scholar 

  36. S.W. Wang, Y. Chen, H.W. Song, A.A. El-Aty, J.S. Liu, S.H. Zhang, Int. J. Mater. Form. (2020). https://doi.org/10.1007/s12289-020-01538-z

    Article  Google Scholar 

  37. K.H. Song, Y.B. Chun, S.K. Hwang, Mater. Sci. Eng., A 454, 629 (2007)

    Google Scholar 

  38. K.K. Alaneme, E.A. Okotete, J. Sci.: Adv. Mater. Devices 4, 19 (2019)

    Google Scholar 

  39. Q.Y. He, T.L. Huang, L.F. Shuai, Y.B. Zhang, G.L. Zhang, X.X. Huang, D.J. Jensen, Scr. Mater. 153, 68 (2018)

    CAS  Google Scholar 

  40. G.L. Wu, D.J. Jensen, Acta Mater. 55, 4955 (2007)

    CAS  Google Scholar 

  41. T.J. Sabin, G. Winther, D.J. Jensen, Acta Mater. 51, 3999 (2003)

    CAS  Google Scholar 

  42. S. Mahajan, Scr. Mater. 68, 95 (2013)

    CAS  Google Scholar 

  43. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Pergamon, New York, 2004)

    Google Scholar 

  44. W.X. Chen, C. Jia, B.J. Hu, C.W. Zheng, D.Z. Li, Mater. Sci. Eng., A 733, 419 (2018)

    CAS  Google Scholar 

  45. W.L. Grube, S.R. Rouze, Can. Metall. Quart. 2, 31 (1963)

    CAS  Google Scholar 

  46. L.C. Lim, R. Raj, Acta Mater. 32, 1177 (1984)

    CAS  Google Scholar 

  47. H. Beladi, P. Cizek, P.D. Hodgson, Metall. Mater. Trans. A 40, 1175 (2009)

    Google Scholar 

  48. H. Kim, C. Kang, M. Huh, O. Engler, Scr. Mater. 57, 325 (2007)

    CAS  Google Scholar 

  49. P.R. Rios, G. Gottstein, L.S. Shvindlerman, Mater. Sci. Eng., A 332, 231 (2002)

    Google Scholar 

  50. H. Tian, H.L. Suo, O.V. Mishin, Y.B. Zhang, D.J. Jensen, J.C. Grivel, J. Mater. Sci. 48, 4183 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Shandong Province under Grant No. ZR2018MEE005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hong Zhang.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SW., Song, HW., Chen, Y. et al. Evolution of Annealing Twins and Recrystallization Texture in Thin-Walled Copper Tube During Heat Treatment. Acta Metall. Sin. (Engl. Lett.) 33, 1618–1626 (2020). https://doi.org/10.1007/s40195-020-01090-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01090-4

Keywords

Navigation