Skip to main content
Log in

Cell Communication-mediated Nonself-Recognition and -Intolerance in Representative Species of the Animal Kingdom

  • Review
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Why has histo-incompatibility arisen in evolution and can cause self-intolerance? Compatible/incompatible reactions following natural contacts between genetically-different (allogeneic) colonies of marine organisms have inspired the conception that self–nonself discrimination has developed to reduce invasion threats by migratory foreign germ/somatic stem cells, in extreme cases resulting in conquest of the whole body by a foreign genome. Two prominent model species for allogeneic discrimination are the marine invertebrates Hydractinia (Cnidaria) and Botryllus (Ascidiacea). In Hydractinia, self–nonself recognition is based on polymorphic surface markers encoded by two genes (alr1, alr2), with self recognition enabled by homophilic binding of identical ALR molecules. Variable expression patterns of alr alleles presumably account for the first paradigm of autoaggression in an invertebrate. In Botryllus, self–nonself recognition is controlled by a single polymorphic gene locus (BHF) with hundreds of codominantly expressed alleles. Fusion occurs when both partners share at least one BHF allele while rejection develops when no allele is shared. Molecules involved in allorecognition frequently contain immunoglobulin or Ig-like motifs, case-by-case supplemented by additional molecules enabling homophilic interaction, while the mechanisms applied to destroy allogeneic grafts or neighbors include taxon-specific tools besides common facilities of natural immunity. The review encompasses comparison with allorecognition in mammals based on MHC-polymorphism in transplantation and following feto-maternal cell trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Adopted from Mueller, Frings Moehrlen: Tier- und Humanphysiologie, Springer Spektrum 2019. Figure constructed after Chamero et al. (2012)

Similar content being viewed by others

References

  • Aanen DK, Debets AJ, de Visser JAG, Hoekstra RF (2008) The social evolution of somatic fusion. BioEssays 30:1193–1203

    CAS  PubMed  Google Scholar 

  • Amar KO, Chadwick NE, Rinkevich B (2008) Coral kin aggregations exhibit mixed allogeneic reactions and enhanced fitness during early ontogeny. BMC Evol Biol 8:126

    PubMed  PubMed Central  Google Scholar 

  • Ballarin L, Cima F, Sabbadin A (1998) Phenoloxidase and cytotoxicity in the compound ascidian Botryllus schlosseri. Dev Comp Immunol 22:479–492

    CAS  PubMed  Google Scholar 

  • Ballarin L, Cima F, Floreani M, Sabbadin A (2002) Oxidative stress induces cytotoxicity during rejection reaction in the compound ascidian Botryllus schlosseri. Comp Biochem Phys C 133:411–418

    Google Scholar 

  • Barki Y, Gateño D, Graur D, Rinkevich B (2002) Soft-coral natural chimerism: a window in ontogeny allows the creation of entities comprised of incongruous parts. Mar Ecol Press Series MEPS 231:91–99

    Google Scholar 

  • Ben-Shlomo R, Motro U, Paz G, Rinkevich B (2008) Pattern of settlement and natural chimerism in the colonial urochordate Botryllus schlosseri. Genetica 132:51–58

    PubMed  Google Scholar 

  • Bianchi DW (2007) Fetomaternal cell trafficking: a story that begins with prenatal diagnosis and may end with stem cell therapy. J Pediatr Surg 42:12–18

    PubMed  Google Scholar 

  • Bianchi DW (2012) Prenatal diagnostics: fetal genes in mother's blood. Nature 487(7407):304–305

    CAS  PubMed  Google Scholar 

  • Bianchi DW, Zickwolf GJ, Weil S, DeMaria MA (1996) Male fetal progenitor cells persist in maternal blood as long as 27 years postpartum. Proc Natl Acad Sci USA 93:705

    CAS  PubMed  Google Scholar 

  • Biassoni R, Ugolotti E, Maria De (2009) NK cell receptors and their interactions with MHC. Curr Pharm Des 15(28):3301–3310

    CAS  PubMed  Google Scholar 

  • Bigger CH (1980) Interspecific and intraspecific acrorhagial aggressive behavior among sea anemones: a recognition of self and not-self. Biol Bull 159:117–134

    Google Scholar 

  • Boyd HC, Brown SK, Harp JA, Weissman IL (1986) Growth and sexual maturation of laboratory-cultured Monterey Botryllus schlosseri. Biol Bull 170(1):91–109

    Google Scholar 

  • Burr ML, Sparbier CE, Chan KL, Lehner PL, Sutherland K, Dawson MA (2019) An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 36(4):385–401e8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buss LW (1982) Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc Natl Acad Sci USA 79(17):5337–5341

    CAS  PubMed  Google Scholar 

  • Buss LW (1987) The evolution of individuality. Princeton University Press, Princeton

    Google Scholar 

  • Buss LW, McFadden CS, Keene DR (1984) Biology of hydractniid hydroids. 2. Histcompatibilty effector system competitive mechanisms mediated by nematocyst discharge. Biol Bull 167:139–158

    Google Scholar 

  • Buss LW, Yund PO (1989) A sibling species group of Hydractinia in the north-eastern United States. J Mar Biol Assoc UK 69:857–874

    Google Scholar 

  • Cadavid LF, Powell AE, Nicotra ML, Moreno M, Buss LW (2004) An invertebrate histocompatibility complex. Genetics 167(1):357–365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Candon S, Margulies DH (2004) MHC: Structure and Function. In: Wilkes DS, Burlingham WJ (eds) Immunobiology of organ transplantation. Kluwer Academic/Plenum Publishing, New York, pp 29–44

    Google Scholar 

  • Castel SE, Cervera A, Mohammadi P, Aguet F, Reverter F, Wolman A, Guigo R, Iossifov I, Vasileva A, Lappalainen T (2018) Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk. Nat Genet 50(9):327. https://doi.org/10.1038/s41588-018-0192-y

    Article  CAS  Google Scholar 

  • Chamero P, Leinders-Zufall T, Zufall F (2012) From genes to social communication: molecular sensing by the vomeronasal organ. Trends Neurosci 35(10):597–606

    CAS  PubMed  Google Scholar 

  • Colombo F, Meldolesi J (2015) L1-CAM and N-CAM: from adhesion proteins to pharmacological targets. Trends Pharmacol Sci 36(11):69–781

    Google Scholar 

  • Cooper EL, Rinkevich B, Uhlenbruck G, Valembois P (1992) Invertebrate immunity: another viewpoint. Scandinavian J Immunol 35:247–266

    CAS  Google Scholar 

  • Corbo JC, Di Gregorio A, Levine M (2001) The ascidian as a model organism in developmental and evolutionary biology. Cell 106(5):535–538

    CAS  PubMed  Google Scholar 

  • Deininger MH, Meyermann R, Schluesener HJ (2002) The allograft inflammatory factor-1 family of proteins. FEBS Lett 514(2–3):115–121

    CAS  PubMed  Google Scholar 

  • Fernandez-Busquets X, Koernig A, Bucior A (2009) Self-Recognition and Ca2+-dependent carbohydrate-carbohydrate cell adhesion provide clues to the cambrian explosion. Molec Biol Evol 26(11):2551

    CAS  PubMed  Google Scholar 

  • Francis L (1973) Intraspecific aggression and its effect on the distribution of Anthopleura elegantissima and some related sea anemones. Biol Bull 144:73

    PubMed  Google Scholar 

  • Frank U, Leitz T, Mueller WA (2001) My favorite model organism: Hydractinia echinata. BioEssays 23:963–971

    CAS  PubMed  Google Scholar 

  • Frank U, Nicotra ML, Schnitzler CE (2020) The colonial cnidarian Hydractinia. EvoDevo 11:7

    PubMed  PubMed Central  Google Scholar 

  • Frank U, Plickert G, Mueller WA (2009) Cnidarian interstitial cells: the dawn of stem cell research. In: Rinkevich B, Matranga V (eds) Stem cells in marine organisms. Springer, Dordrecht

    Google Scholar 

  • Fuchs MA, Mokady O, Frank U (2002) The ontogeny of allorecognition in a colonial hydroid and the fate of early established chimeras. Int J Dev Biol 46(5):699–704

    PubMed  Google Scholar 

  • Gaino E, Bavestrello G, Magnino G (1999) Self/non-self recognition in sponges. Italian J Zool 66(4):299

    CAS  Google Scholar 

  • Gauthier M, Degnan BM (2008) Partitioning of genetically distinct cell populations in chimeric juveniles of the sponge Amphimedon queenslandica. Dev Compar Immunol 32(11):1270–1280

    CAS  Google Scholar 

  • Ghosh J, Lun CM, Majeske A et al (2011) Invertebrate immune diversity. Dev Compar Immunol 35(9):959–974

    CAS  Google Scholar 

  • Grosberg RK, Hart MW (2000) Mate selection and the evolution of highly polymorphic self/nonself recognition genes. Science 289(5487):2111–2114

    CAS  PubMed  Google Scholar 

  • Gutierrez-Arcelus M, Baglaenko Y, Arora J, Hannes S, Luo Y, Amariuta T, Teslovich N, Rao DA, Ermann J, Jonsson AH et al (2020) Allele-specific expression changes dynamically during T cell activation in HLA and other autoimmune loci. Nat Genet 52:247–253

    CAS  PubMed  Google Scholar 

  • Hattori D, Chen Y, Matthews BJ, Salwinski L, Sabatti C, Grueber WB, Zipursky SL (2009) Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms. Nature 461:644–648

    CAS  PubMed  PubMed Central  Google Scholar 

  • He S, Grasis JA, Nicotra ML, Juliano CE, Schnitzler CE (2019) Cnidofest 2018: the future is bright for cnidarian research. EvoDevo 10:20. https://doi.org/10.1186/s13227-019-0134-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano M, Das S, Guo P, Cooper MD (2011) The evolution of adaptive immunity in vertebrates. Adv Immunol 109:125

    CAS  PubMed  Google Scholar 

  • Hirose E (2003) Colonial allorecognition, hemolytic rejection, and viviparity in botryllid ascidians. Zool Sci 20:387–394

    PubMed  Google Scholar 

  • Jiang L, Xin-Min L, Sheng L, Huang H (2015) Fused embryos and pre-metamorphic conjoined larvae in a broadcast spawning reef coral. F1000Research 4:44–55

    PubMed  PubMed Central  Google Scholar 

  • Johnson CP, Fujimoto I, Perrin-Tricaud C, Rutishauser U, Leckband D (2004) Mechanism of homophilic adhesion by the neural cell adhesion molecule: use of multiple domains and flexibility. Proc Natl Acad Sci USA 101(18):6963–6968

    CAS  PubMed  Google Scholar 

  • Kallenbach LR, Johnson KL, Bianchi DW (2011) Fetal cell microchimerism and cancer: a nexus of reproduction, immunology, and tumor biology. Can Res 71(1):8–12

    CAS  Google Scholar 

  • Karadge UB, Gosto M, Nicotra ML (2015) Allorecognition proteins in an invertebrate exhibit homophilic interactions. Current Biol 25(21):2845–2850

    CAS  Google Scholar 

  • Karaulov EE, Bottcher RT, Niehrs C (2006) A role for fibronectin-leucine-rich transmembrane cell-surface proteins in homotypic cell adhesion. EMBO Rep 7:83–290

    Google Scholar 

  • Khalturin K, Becker M, Rinkevich B, Bosch T (2003) Urochordates and the origin of natural killer cells: identification of a CD94/NKR-P1-related receptor in blood cells of Botryllus. Proc Natl Acad Sci USA 100(2):622–627

    CAS  PubMed  Google Scholar 

  • Khalturin K, Bosch TCG (2006) Self/nonself discrimination at the basis of chordate evolution: limits on molecular conservation. Curr Opin Immunol 18:1–6

    Google Scholar 

  • Khalturin K, Kürn U, Pinnow N, Bosch TCG (2005) Towards a molecular code for individuality in the absence of MHC: screening for individually variable genes in the urochordate Ciona intestinalis. Dev Compar Immunol 29(9):759

    CAS  Google Scholar 

  • Khosrotehrani K, Bianchi DW (2005) Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci 118(8):1559–1563

    CAS  PubMed  Google Scholar 

  • Kruse M, Steffen R, Batel R, Mueller IM, Mueller WEG (1999) Differential expression of allograft inflammatory factor 1 and of glutathione peroxidase during auto- and allograft response in marine sponges. J Cell Sci 112(23):4305–4313

    CAS  PubMed  Google Scholar 

  • Lange R, Dick M, Mueller WA (1992) Specificity and early ontogeny of historecognition in the hydroid Hydractinia. J Exp Zoology 262:307–316

    Google Scholar 

  • Lange R, Plickert G, Mueller WA (1989) Histoincompatibility in a low invertebrate, Hydractinia echinata. Analysis of the mechanism of rejection. J Exp Zool 249:284–292

    Google Scholar 

  • Leinders-Zufall T, Ishii T, Chamero P, Hendrix P, Oboti L, Schmid A, Kircher S, Pyrski M, Akiyoshi S, Khan M, Vaes E, Zufall F, Mombaerts P (2014) A family of nonclassical class I MHC genes contributes to ultrasensitive chemodetection by mouse vomeronasal sensory neurons. J Neurosci 34(15):5121–5133

    PubMed  PubMed Central  Google Scholar 

  • Liu H, Mintern JD (2019) MARCH ligases in immunity. Curr Opin Immunol 58:38–43

    CAS  PubMed  Google Scholar 

  • Loker ES, Adema CM, Zhang SM, Kepler TB (2004) Invertebrate immune systems–not homogeneous, not simple, not well understood. Immunol Rev 198:10

    PubMed  PubMed Central  Google Scholar 

  • Luo N, Nixon MJ, Gonzalez-Ericsson PI et al (2018) DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer. Nat Commun 9:248

    PubMed  PubMed Central  Google Scholar 

  • Magor BG, De Tomaso AW, Rinkevich B, Weissman IL (1999) Allorecognition in colonial tunicates: protection against predatory cell lineages? Immunol Reviews 167:69

    CAS  Google Scholar 

  • Maldonado M (1998) Do chimeric sponges have improved chances of survival? Mar Ecol Prog Ser 164:301–306

    Google Scholar 

  • Mali B, Millane CR, Plickert G, Frohme M, Frank U (2011) A polymorphic, thrombospondin domain-containing lectin is an oocyte marker in Hydractinia: implications for germ cell specification and sex determination. Int J Dev Biol 55:103–108

    CAS  PubMed  Google Scholar 

  • Mali B, Moehrlen F, Frohme M, Frank U (2004) A putative double role of a chitinase in a cnidarian: pattern formation and immunity. Dev Compar Immunol 28(10):973–981

    CAS  Google Scholar 

  • Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, Funayama N, Agata K, Bosch TC (2007) The innate immune repertoire in Cnidaria—Ancestral complexity and stochastic gene loss. Genome Biol 8:R59

    PubMed  PubMed Central  Google Scholar 

  • Miyadera H, Ohashi J, Lernmark A et al (2015) Cell-surface MHC density profiling reveals instability of autoimmunity-associated HLA. J Clin Investig 125(1):275–291

    PubMed  Google Scholar 

  • Mizrahi DS, Navarrete A, Flores AAV (2014) Groups travel further: pelagic metamorphosis and polyp clustering allow higher dispersal potential in sun coral propagules. Coral Reefs 33(2):443–448

    Google Scholar 

  • Mokady O, Buss LW (1996) Transmission genetics of allorecognition in Hydractinia symbiolongicarpus (Cnidaria, Hydrozoa). Genetics 143:823–827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moretta A, Biassoni R, Bottino C, Pende D, Vitale M, Poggi A, Mingari MC, Moretta L (1997) Major histocompatibility complex class I-specific receptors on human natural killer and T lymphocytes. Immunol Rev 155:105–117

    CAS  PubMed  Google Scholar 

  • Morse ANC, Morse DE (1996) Flypapers for coral and other planktonic larvae. Bioscience 46(4):254–262

    Google Scholar 

  • Mueller WA (1964) Experimental investigations on colony development, polyp differentiation and sexual chimeras in Hydractinia echinata (Foreign title: Experimentelle Untersuchungen über Stockentwicklung, Polypendifferenzierung und Sexualchimären bei Hydractinia echinata). Wilhelm Roux’ Arch für Entwicklungsmechanik 155:181–268

    Google Scholar 

  • Mueller WA (1996) Defense of conspecific habitat competitors in Hydractinia echinata. Encyclopaedia Cinematographica VHS-Video C 1907. Institut für den Wissenschaftlichen Film, Göttingen. Copies available on request from uri.frank@nuigalway.ie or muellerwm@t-online.de

  • Mueller WA (2002) Autoaggressive, multi-headed and other mutant phenotypes in Hydractinia echinata (Cnidaria: Hydrozoa). Intern J Dev Biol 46(8):1023–1033

    Google Scholar 

  • Mueller WA, Leitz T (2002) Metamorphosis in the Cnidaria. Canad J Zool 80:1755–1771

    Google Scholar 

  • Mueller WA, Teo R, Frank U (2004) Totipotency of migratory stem cells in a hydroid. Dev Biol 275:215–224

    CAS  Google Scholar 

  • Mueller WEG, Blumbach B, Mueller IM (1999) Evolution of the innate and adaptive immune systems: relationships between potential immune molecules in the lowest metazoan phylum (Porifera) and those in vertebrates. Transplantation 68(9):1215–1227

    Google Scholar 

  • Mueller WEG, Mueller I (2003) Origin of the metazoan immune system: Identification of the molecules and their functions in sponges. Integrat Compar Biol 43:281–292

    CAS  Google Scholar 

  • Mukai H (1992) Allogeneic recognition and sex differentiation in chimeras of the freshwater sponge Ephydatia muelleri. J Exp Zool 264(3):298–311

    Google Scholar 

  • Nicotra ML (2019) Invertebrate allorecognition. Curr Biol 29(11):R463–R467

    CAS  PubMed  Google Scholar 

  • Nicotra ML, Moreno MW, Buss LW (2004) An invertebrate histocompatibility complex. Genetics 167(1):357

    PubMed  PubMed Central  Google Scholar 

  • Nicotra ML, Powell AE, Rosengarten RD, Moreno M, Grimwood J, Lakkis FG, Dellaporta S, Buss LW (2009) A hypervariable invertebrate allodeterminant. Curr Biol 19(7):583–589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren M, Paz G, Douek J, Rosner A, Amar KO, Rinkevich B (2013) Marine invertebrates cross phyla comparisons reveal highly conserved immune machinery. Immunobiol 218:484

    CAS  Google Scholar 

  • Pancer Z, Gershon H, Rinkevich B (1995) Coexistence and possible parasitism of somatic and germ cell lines in chimeras of the colonial urochordate Botryllus schlosseri. Biol Bull 189:106–112

    CAS  PubMed  Google Scholar 

  • Parham P (2005) Immunogenetics of killer cell immunoglobulin-like receptors. Mol Immunol 42:459–462

    CAS  PubMed  Google Scholar 

  • Paust S, Senman B, Von Andrian UH (2010) Adaptive immune responses mediated by natural killer cells. Immunol Rev 235(1):286–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petersdorf EW, O'hUigin C (2019) The MHC in the era of next-generation sequencing: Implications for bridging structure with function. Human Immunol 80(1):67–87

    CAS  Google Scholar 

  • Plickert G, Frank U, Mueller WA (2012) Hydractinia, a pioneering model for stem cell biology and reprogramming somatic cells to pluripotency. Int J Dev Biol 56:519–534

    PubMed  Google Scholar 

  • Plickert G, Schetter E, Verhey-van-Wijk N, Schlossherr J, Steinbuechel M, Gajewski M (2003) The role of alpha-amidated neuropeptides in hydroid development: LWamides and metamorphosis in Hydractinia echinata. Int J Dev Biol 47(6):439–450

    CAS  PubMed  Google Scholar 

  • Poudyal M, Rosa S, Powell AE, Moreno M, Dellaporta SL, Buss LW, Lakkis FG (2007) Embryonic chimerism does not induce tolerance in an invertebrate model organism. Proc Natl Acad Sci USA 104(11):4559–4564

    CAS  PubMed  Google Scholar 

  • Powell AE, Nicotra ML, Moreno MA, Lakkis FG, Dellaporta SL, Buss LW (2007) Differential effect of allorecognition loci on phenotype in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa). Genetics 177:2101–2107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reem E, Douek J, Paz G, Katzir G, Rinkevich B (2017) Phylogenetics biogeography and population genetics of the ascidian Botryllus schlosseri in the Mediterranean Sea and beyond. Mol Phylogeny Evol 107:221–341

    Google Scholar 

  • Reyburn H, Mandelboim O, Valés-Goméz M, Sheu EG, Pazmany L, Davis DM, Strominger JL (2006) Human NK cells: their ligands, receptors and functions. Immunol Reviews 155(1):119–126

    Google Scholar 

  • Rinkevich B (1992) Aspects of the incompatibility nature in botryllid ascidians. Anim Biol 1:17–28

    Google Scholar 

  • Rinkevich B (2001) Human natural chimerism: An acquired character or a vestige of evolution? Human Immunol 62:651–657

    CAS  Google Scholar 

  • Rinkevich B (2002) Germ cell parasitism as an ecological and evolutionary puzzle: Hitchhiking with positively selected genotypes. Oikos 96:25–30

    Google Scholar 

  • Rinkevich B (2004a) Primitive immune systems: are your ways my ways? Immunol Reviews 198:25–35

    Google Scholar 

  • Rinkevich B (2004b) Allorecognition and xenorecognition in reef corals: a decade of interactions. Hydrobiologia 530(531):443–450

    Google Scholar 

  • Rinkevich B (2005) Natural chimerism in colonial urochordates. J Exp Mar Biol Ecol 322:93–109

    Google Scholar 

  • Rinkevich B, Matranga V (2009) Stem cells: autonomy interactors that emerge as causal agents and legitimate units of selection. In: Rinkewich B (ed) Stem cells in marine organisms. Springer, Dordrecht, pp 1–19

    Google Scholar 

  • Rinkevich B (2011a) Quo vadis chimerism? Chimerism 2011(2):1–5

    Google Scholar 

  • Rinkevich B (2011b) The „immunology trap‟ of anthozoans. Invertebr Surv J (ISJ) 8:153–181

    Google Scholar 

  • Rinkevich B (2012) Neglected biological features in cnidarians self-nonself recognition. In: Lopez-Larrea C (ed) Ancient origin of self recognition systems in nature. Landes Bioscience, Austin, pp 46–59

    Google Scholar 

  • Rinkevich B (2015) Conserved histocompatible machinery in marine invertebrates? Invertebr Surv J (ISJ) 12:170–172

    Google Scholar 

  • Rinkevich B, Douek J, Rabinowitz C, Paz P (2012) The candidate Fu/HC gene in Botryllus schlosseri (Urochordata) and ascidians’ historecognition—an oxymoron? Dev Compar Immunol 36:718–727

    CAS  Google Scholar 

  • Rinkevich B, Porat R, Goren M (1995) Allorecognition elements on a urochordate histocompatibility locus indicate unprecedented extensive polymorphism. Proc R Soc London B 259:319–324

    Google Scholar 

  • Rinkevich B, Shapira M (1988) An improved diet for inland broodstock and the establishment of an inbred line from Botryllus schlosseri, a colonial sea squirt (Ascidiacea). Aquat Living Resour 11(3):163–171

    Google Scholar 

  • Rinkevich B, Shapira M, Weissman IL, Saito Y (1992) Allogeneic responses between 3 remote populations of the cosmopolitan ascidian Botryllus schlosseri. Zool Sci 1992:989–994

    Google Scholar 

  • Rinkevich B, Weissman IL (1987a) The fate of Botryllus (Ascidiacea) larvae cosettled with parental colonies: Beneficial or deleterious consequences? Biol Bull 173:474–488

    PubMed  Google Scholar 

  • Rinkevich B, Weissman IL (1987b) A long-term study of fused subclones of a compound ascidian. The resorption phenomenon. J Zool 213(4):717–733

    Google Scholar 

  • Rinkevich B, Weissman IL (1989) Variation in the outcomes following chimera formation in the colonial tunicate Botryllus schlosseri. Bull Mar Sci 45:213–227

    Google Scholar 

  • Rinkevich B, Weissman IL (1992a) Allogeneic resorption in colonial protochordates—consequences of nonself recognition. Dev Compar Immunol 16:275–286

    CAS  Google Scholar 

  • Rinkevich B, Weissman IL (1992b) Chimeras vs genetically homogeneous individuals: potential fitness costs and benefits. Oikos 63:119–124

    Google Scholar 

  • Rinkevich B, Yankelevich I (2004) Environmental split between germ cell parasitism and somatic cell synergism in chimeras of a colonial urochordate. J Exp Biol 207:3531–3536

    PubMed  Google Scholar 

  • Rosa SFP, Powell AE, Rosengarten RD, Nicotra ML, Moreno MA, Grimwood J, Lakkis FG, Dellaporta S, Buss LW (2010) Hydractinia allodeterminant alr1 resides in an immunoglobulin superfamily-like gene complex. Curr Biol 20(12):1122–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosengarten RD, Moreno MA, Lakkis FG, Buss LW, Dellaporta SL (2011) Genetic diversity of the allodeterminant alr2 in Hydractinia symbiolongicarpus. Mol Biol Evol 28(2):933–947

    CAS  PubMed  Google Scholar 

  • Rosengarten RD, Nicotra ML (2011) Model systems of allorecognition. Curr Biol 21:R82–R92

    CAS  PubMed  Google Scholar 

  • Sawicki MW, Dimasi N, Natarajan K, Wang J, Margulies DH, Mariuzza RA (2001) Structural basis of MHC class I recognition by natural killer cell receptors. Immunol Rev 181:52–65

    CAS  PubMed  Google Scholar 

  • Schnitzler CE, Nguyen AD, Klasfeld SJ, Bond SR, Plickert G, Buss L, Wolfsberg TG, Mullikin JC, Nicotra ML, Cartwright P et al (2016) Genomics of Hydractinia: A cnidarian model for regeneration, allorecognition, and developmental biology. Integrat Compar Biol 56(1):E196

    Google Scholar 

  • Schwoerer-Boehning B, Kroiher M, Mueller WA (1990) Signal transmission and covert prepattern in the metamorphosis of Hydractinia echinata (Hydrozoa). Roux's Arch Dev Biol 198:245–251

    Google Scholar 

  • Scofield VL, Schlumpberger JM, West LA, Weissman IL (1982) Protochordate allorecognition is controlled by a MHC-like gene system. Nature 295:499–502

    CAS  PubMed  Google Scholar 

  • Simon-Blecher N, Achituv Y, Rinkevich B (2004) Protochordate concordant xenotransplantation settings reveal outbreaks of donor cells and divergent life span traits. Dev Compar Immunol 28(10):983–991

    CAS  Google Scholar 

  • Spotorno-Oliveira P, Figueiredo M, Tâmega FT (2015) Coralline algae enhance the settlement of the vermetid gastropod Dendropoma irregulare (d'Orbigny) in the southwestern Atlantic. J Exp Mar Biol Ecol 471:137–145

    Google Scholar 

  • Stoner DS, Rinkevich B, Weissman IL (1999) Heritable germ and somatic cell lineage competitions in chimeric colonial protochordates. Proc Natl Acad Sci USA 96:9148–9153

    CAS  PubMed  Google Scholar 

  • Stoner DS, Weissman IL (1996) Somatic and germ cell parasitism in a colonial ascidian: possible role for a highly polymorphic allorecognition system. Proc Natl Acad Sci USA 93:15254–15259

    CAS  PubMed  Google Scholar 

  • Sweeney CG, Curran E, Westmoreland SV et al (2012) Quantitative molecular assessment of chimerism across tissues in marmosets and tamarins. BMC Genomics 13:98

    PubMed  PubMed Central  Google Scholar 

  • Sykes M, Wood K, Sachs DH (2008) Transplantation immunology. In: Paul WE (ed) Fundamental immunology, 6th edn. Lippincott Williams & Wilkins, New York, pp 1426–1488

    Google Scholar 

  • Taketa DA, Nydam ML, Langenbacher AD, Rodriguez D (2015) Molecular evolution and in vitro characterization of Botryllus histocompatibility factor. Immunogenetics 67:605

    CAS  PubMed  Google Scholar 

  • Toh TC, Chou LM (2013) Aggregated settlement of Pocillopora damicornis planulae on injury sites may facilitate coral wound healing. Bull Mar Sci 89(2):583–584

    Google Scholar 

  • Utans U, Arceci RJ, Yamashita Y, Russell ME (1995) Cloning and characterization of allograft inflammatory factor-1: a novel macrophage factor identified in rat cardiac allografts with chronic rejection. J Clinic Invest 95(6):2954–2962

    CAS  Google Scholar 

  • Vigneau S, Vinogradova S, Savova V et al (2018) High prevalence of clonal monoallelic expression. Nat Genet 50:1198–1199

    CAS  PubMed  Google Scholar 

  • Voskoboynik A, Rinkevich B, Weissman IL (2009) Stem cells, chimerism and tolerance: lessons from mammals and ascidians. In: Rinkevich B, Matranga V (eds) Stem cells in marine organisms. Springer, Heidelberg, pp 281–308

    Google Scholar 

  • Voskoboynik A, Newman AM, Corey DM, Sahoo D, Pushkarev D, Neff NF, Weissman IL (2013) Identification of a colonial chordate histocompatibility gene. Science 341(6144):384–388

    CAS  PubMed  Google Scholar 

  • Watanabe H (1962) Further studies in the regulation in fused colonies in Botryllus primigenus (Ascidiae Compositae). Sci Rep Tokyo Kyoiku Daiq (B) 10:253

    Google Scholar 

  • Weis RA (2018) Open questions: knowing who’s who in multicellular animals is not always as simple as we imagine. BMC Biol 16:115

    Google Scholar 

  • Weissman IL, Saito Y, Rinkevich B (1989) Allorecognition in colonial tunicates: parallels with and tangents from vertebrate immunity. In: Melchers F (ed) Progress in immunology. Springer, Heidelberg, pp 1256–1263

    Google Scholar 

  • Weissman IL, Saito Y, Rinkevich B (1990) Allorecognition histocompatibility in a protochordate species: Is the relationship to MHC semantic or structural? Immunol Rev 113:227–241

    CAS  PubMed  Google Scholar 

  • Weissman IL, Scofield V, Saito Y, Boyd H, Rinkevich B (1988) Speculations on the relationships of two Botryllus allorecognition reactions—colony specificity and resorption- to vertebrate histocompatibility. In: Grosberg RK, Hedgecock D, Nelson K (eds) Invertebrate historecognition. Plenum Press, New York, pp 67–78

    Google Scholar 

  • Yin C, Humphreys T (1996) Acute cytotoxic allogeneic histoincompatibility reactions involving gray cells in the marine sponge Callyspongia diffusa. Biol Bull 191(2):159–167

    CAS  PubMed  Google Scholar 

  • Zarate-Poles A, Ocampo ID, Cadavit LF (2019) The putative immune recognition repertoire of the model cnidarian Hydractinia symbiolongicarpus is large and diverse. Gene (Amsterdam) 684:104–117

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Uri Frank, University of Galway, for proof-reading an earlier version of the manuscript and Prof. Matthew Nicotra, University of Pittsburgh, for advice to correct Fig. 5a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Werner A. Mueller or Baruch Rinkevich.

Additional information

Handling editor: Konstantinos Voskarides.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mueller, W.A., Rinkevich, B. Cell Communication-mediated Nonself-Recognition and -Intolerance in Representative Species of the Animal Kingdom. J Mol Evol 88, 482–500 (2020). https://doi.org/10.1007/s00239-020-09955-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-020-09955-z

Keywords

Navigation