Skip to main content
Log in

The impact of low mineral content water on cardiac function in diabetic rats: focus on oxidative stress

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to estimate the effects of natural low mineral water from the source “Sneznik-1/79” in Serbia on glycemia as well as heart function in rats with diabetes mellitus type 2 (T2DM), with the special emphasis on the role of the oxidative stress. Twenty Wistar albino rats (males, 4 weeks old at the beginning of the study, body weight 180 ± 20 g) were included in the study. Rats were divided randomly into 2 groups (10 animals per group): T2DM: rats with diabetes mellitus type 2 with free access to tap water; T2DM + SW: rats with diabetes mellitus type with free access to natural mineral water from “Sneznik-1/79”. Glucose level, ex vivo cardiac function as well as systemic and cardiac redox state were assessed. At the end of the study protocol, glucose level was lower in diabetic rats who consumed mineral water. Moreover cardiac function wasn’t affected by mineral water intake, however, significant antioxidant effects were observed. Our study suggests that 4-week consumption of low mineral water from the spring “Sneznik-1/79” has important role in regulation of glycemia and altering redox state in favor of elevated antioxidant capacity without affecting heart function. Based on our findings we may assume that low mineral water from the spring “Sneznik-1/79” has the potential to be used either as preventive strategy or as additional therapeutic strategy in management of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The all data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Das SK, Elbein SC (2006) The genetic basis of type 2 diabetes. Cell Sci 2:100–131. https://doi.org/10.1901/jaba.2006.2-100

    Article  Google Scholar 

  2. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149. https://doi.org/10.1016/j.diabres.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  3. Lau LH, Lew J, Borschmann K, Thijs V, Ekinci EI (2019) Prevalence of diabetes and its effects on stroke outcomes: a meta-analysis and literature review. J Diabetes Investig 10:780–792. https://doi.org/10.1111/jdi.12932

    Article  PubMed  Google Scholar 

  4. Einarson TR, Acs A, Ludwig C, Panton UH (2018) Economic burden of cardiovascular disease in type 2 diabetes: a systematic review. Value Health 21:881–890. https://doi.org/10.1016/j.jval.2017.12.019

    Article  PubMed  Google Scholar 

  5. Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, Del Cañizo-Gómez FJ (2016) Update on the treatment of type 2 diabetes mellitus. World J Diabetes 7:354–395. https://doi.org/10.4239/wjd.v7.i17.354

    Article  PubMed  PubMed Central  Google Scholar 

  6. Raveendran AV, Chacko EC, Pappachan JM (2018) Non-pharmacological treatment options in the management of diabetes mellitus. Eur Endocrinol 14(2):31–39. https://doi.org/10.17925/EE.2018.14.2.31

    Article  PubMed  PubMed Central  Google Scholar 

  7. O’Connor L, Imamura F, Lentjes MA, Khaw KT, Wareham NJ, Forouhi NG (2015) Prospective associations and population impact of sweet beverage intake and type 2 diabetes, and effects of substitutions with alternative beverages. Diabetologia 58:1474–1483. https://doi.org/10.1007/s00125-015-3572-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carroll HA, Betts JA, Johnson L (2016) An investigation into the relationship between plain water intake and glycated Hb (HbA1c): a sex-stratified, cross-sectional analysis of the UK National Diet and Nutrition Survey (2008–2012). Br J Nutr 10:1–11. https://doi.org/10.1017/S0007114516003688

    Article  CAS  Google Scholar 

  9. Naumann J, Biehler D, Lüty T, Sadaghiani C (2017) Prevention and therapy of type 2 diabetes—what is the potential of daily water intake and its mineral nutrients? Nutrients. https://doi.org/10.3390/nu9080914

    Article  PubMed  PubMed Central  Google Scholar 

  10. Quattrini S, Pampaloni B, Brandi ML (2016) Natural mineral waters: chemical characteristics and health effects. Clin Cases Miner Bone Metab 13:173–180. https://doi.org/10.11138/ccmbm/2016.13.3.173

    Article  PubMed  Google Scholar 

  11. Toxqui L, Vaquero MP (2016) An intervention with mineral water decreases cardiometabolic risk biomarkers. A crossover, randomised, controlled trial with two mineral waters in moderately hypercholesterolaemic adults. Nutrients. https://doi.org/10.3390/nu8070400

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schoppen S, Pérez-Granados AM, Carbajal A, Oubiña P, Sánchez-Muniz FJ, Gómez-Gerique JA, Vaquero MP (2004) A sodium-rich carbonated mineral water reduces cardiovascular risk in postmenopausal women. J Nutr 134:1058–1063. https://doi.org/10.1093/jn/134.5.1058

    Article  CAS  PubMed  Google Scholar 

  13. Schoppen S, Pérez-Granados AM, Carbajal A, Sarriá B, Sánchez-Muniz FJ, Gómez-Gerique JA, Pilar Vaquero M (2005) Sodium bicarbonated mineral water decreases postprandial lipaemia in postmenopausal women compared to a low mineral water. Br J Nutr 94:582–587. https://doi.org/10.1079/bjn20051515

    Article  CAS  PubMed  Google Scholar 

  14. Pereira CD, Severo M, Araújo JR et al (2014) Relevance of a hypersaline sodium-rich naturally sparkling mineral water to the protection against metabolic syndrome induction in fructose-fed Sprague-Dawley rats: a biochemical, metabolic, and redox approach. Int J Endocrinol 2014:384583. https://doi.org/10.1155/2014/384583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Costantino M, Giampaolo C, Filippelli A (2012) Effects of drinking spa therapy on oxidative stress. Clin Ter 163:e13–e17

    CAS  PubMed  Google Scholar 

  16. Pari L, Chandramohan R (2017) Modulatory effects of naringin on hepatic key enzymes of carbohydrate metabolism in high-fat diet/low-dose streptozotocin-induced diabetes in rats. Gen Physiol Biophys 36:343–352. https://doi.org/10.4149/gpb_2016055

    Article  CAS  PubMed  Google Scholar 

  17. Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 123–132

    Google Scholar 

  18. Pick E, Keisari Y (1980) A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 38:161–170. https://doi.org/10.1016/0022-1759(80)90340-3

    Article  CAS  PubMed  Google Scholar 

  19. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138. https://doi.org/10.1016/0003-2697(82)90118-X

    Article  CAS  PubMed  Google Scholar 

  20. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  21. McCord JM, Fridovich I (1969) The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J Biol Chem 244:6056–6063

    CAS  PubMed  Google Scholar 

  22. Beutler E (1982) Catalase. In: Beutler E (ed) Red cell metabolism, a manual of biochemical methods. Grune and Stratton, New York, pp 105–106

    Google Scholar 

  23. Misra HP, Fridovich I (1972) The role of superoxide-anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  24. Beutler E (1975) Reduced glutathione (GSH). In: Beutler E (ed) Red cell metabolism, a manual of biochemical methods. Grune and Stratton, New York, pp 112–114

    Google Scholar 

  25. Costa-Vieira D, Monteiro R, Martins MJ (2019) Metabolic syndrome features: is there a modulation role by mineral water consumption? A review. Nutrients. https://doi.org/10.3390/nu11051141

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pérez-Granados AM, Navas-Carretero S, Schoppen S, Vaquero MP (2010) Reduction in cardiovascular risk by sodium-bicarbonated mineral water in moderately hypercholesterolemic young adults. J Nutr Biochem 21(10):948–953. https://doi.org/10.1016/j.jnutbio.2009.07.010

    Article  CAS  PubMed  Google Scholar 

  27. Burmazovic S, Henzen C, Brander L, Cioccari L (2018) One too many diabetes: the combination of hyperglycaemic hyperosmolar state and central diabetes insipidus. Endocrinol Diabetes Metab Case Rep. https://doi.org/10.1530/EDM-18-0029

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schoppen S, Sánchez-Muniz FJ, Pérez-Granados M, Gómez-Gerique JA, Sarriá B, Navas-Carretero S, Pilar Vaquero M (2007) Does bicarbonated mineral water rich in sodium change insulin sensitivity of postmenopausal women? Nutr Hosp 22:538–544

    CAS  PubMed  Google Scholar 

  29. Gaschler MM, Stockwell BR (2017) Lipid peroxidation in cell death. Biochem Biophys Res Commun 482:419–425. https://doi.org/10.1016/j.bbrc.2016.10.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bradic J, Zivkovic V, Srejovic I et al (2019) Protective effects of Galium verum L. extract against cardiac ischemia/reperfusion injury in spontaneously hypertensive rats. Oxid Med Cell Longev 2019:4235405. https://doi.org/10.1155/2019/4235405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bellometti S, Cecchettin M, Lalli A, Galzigna L (1996) Mud pack treatment increases serum antioxidant defences in osteoarthrosic patients. Biomed Pharmacother 50:37. https://doi.org/10.1016/0753-3322(96)85097-9

    Article  CAS  PubMed  Google Scholar 

  32. Benedetti S, Benvenuti F, Nappi G (2009) Antioxidative effects of sulfurous mineral water: protection against lipid and protein oxidation. Eur J Clin Nutr 63:106–112. https://doi.org/10.1038/sj.ejcn.1602892

    Article  CAS  PubMed  Google Scholar 

  33. Caraglia M, Beninati S, Giuberti G et al (2005) Alternative therapy of earth elements increases the chondroprotective effects of chondroitin sulfate in mice. Exp Mol Med 37(5):476–481. https://doi.org/10.1038/emm.2005.58

    Article  CAS  PubMed  Google Scholar 

  34. Masuda K, Tanaka Y, Kanehisa M et al (2017) Natural reduced water suppressed anxiety and protected the heightened oxidative stress in rats. Neuropsychiatr Dis Treat 13:2357–2362. https://doi.org/10.2147/NDT.S138289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Y, Hamasaki T, Teruya K et al (2012) (2012) Suppressive effects of natural reduced waters on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology 64:281–297. https://doi.org/10.1007/s10616-011-9414-1

    Article  PubMed  Google Scholar 

  36. Bamosa AO, Elnour AA, Al Meheithif A, Aleissa K, Al-Almaie SM (2013) Zamzam water ameliorates oxidative stress and reduces hemoglobin A1c in type 2 diabetic patients. 4:3. https://doi.org/10.4172/2155-6156.1000249

  37. Hivelin C, Béraud-Dufour S, Devader C et al (2016) Potentiation of calcium influx and insulin secretion in pancreatic beta cell by the specific TREK-1 blocker Spadin. J Diabetes Res 2016:3142175. https://doi.org/10.1155/2016/3142175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ha BG, Park JE, Shin EJ, Shon YH (2014) Modulation of glucose metabolism by balanced deep-sea water ameliorates hyperglycemia and pancreatic function in streptozotocin-induced diabetic mice. PLoS ONE 9:e102095. https://doi.org/10.1371/journal.pone.0102095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheltova AA, Kharitonova MV, Iezhitsa IN, Spasov AA (2016) Magnesium deficiency and oxidative stress: an update. Biomedicine (Taipei) 6(4):20. https://doi.org/10.7603/s40681-016-0020-6

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by Grant No. 175043 from the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Funding

There is no actual or potential financial conflict of interest related to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Jakovljevic.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Ethical approval

The study protocol was approved by the Ethical Committee for the Welfare of Experimental Animals of the Faculty of Medical Sciences, University of Kragujevac, Serbia (Number 01-1099/1). All experiments were performed according to EU Directive for Welfare of Laboratory Animals (86/609/EEC) and Principles of Good Laboratory Practice.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalovic, D., Jakovljevic, V., Radoman, K. et al. The impact of low mineral content water on cardiac function in diabetic rats: focus on oxidative stress. Mol Cell Biochem 472, 135–144 (2020). https://doi.org/10.1007/s11010-020-03792-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03792-w

Keywords

Navigation