Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Electrochemical Oxidative Esterification of Thiophenols: Efficient Access to Sulfinic Esters

Author(s): Chun-Hui Yang, Cheng Wu, Jun-Ming Zhang, Xiang-Zhang Tao, Jun Xu, Jian-Jun Dai* and Hua-Jian Xu*

Volume 17, Issue 7, 2020

Page: [540 - 547] Pages: 8

DOI: 10.2174/1570179417666200620215704

Price: $65

Abstract

Background: The sulfinic esters are important and useful building blocks in organic synthesis.

Objective: The aim of this study was to develop a simple and efficient method for the synthesis of sulfinic esters.

Materials and Methods: Constant current electrolysis from thiols and alcohols was selected as the method for the synthesis of sulfinic esters.

Results and Discussion: A novel electrochemical method for the synthesis of sulfinic esters from thiophenols and alcohols has been developed. Up to 27 examples of sulfinic esters have been synthesized using the current methods. This protocol shows good functional group tolerance as well as high efficiency. In addition, this protocol can be easily scaled up with good efficiency. Notably, heterocycle-containing substrates, including pyridine, thiophene, and benzothiazole, gave the desired products in good yields. A plausible reaction mechanism is proposed.

Conclusion: This research not only provides a green and efficient method for the synthesis of sulfinic esters but also shows new applications of electrochemistry in organic synthesis. It is considered that this green and efficient synthetic protocol used to prepare sulfinic esters will have good applications in the future.

Keywords: Electrochemistry, free radical, green chemistry, oxidation, esterification, thiophenol.

Graphical Abstract
[1]
Lujan-Montelongo, J.A.; Estevez, A.O.; Fleming, F.F. Alkyl sulfinates: formal nucleophiles for synthesizing tosmic analogs. Eur. J. Org. Chem., 2015, 2015(7), 1602-1605.
[http://dx.doi.org/10.1002/ejoc.201403615] [PMID: 26236153]
[2]
Yuste, F.; Linares, A.H.; Mastranzo, V.M.; Ortiz, B.; Sánchez-Obregón, R.; Fraile, A.; Ruano, J.L. Methyl sulfinates as electrophiles in friedel-crafts reactions. Synthesis of aryl sulfoxides. J. Org. Chem., 2011, 76(11), 4635-4644.
[http://dx.doi.org/10.1021/jo2006335] [PMID: 21506555]
[3]
Nguyen, N.T.; Vo, H.T.; Duus, F.; Luu, T.X.T. Dramatic influence of ionic liquid and ultrasound irradiation on the electrophilic sulfinylation of aromatic compounds by sulfinic esters. Molecules, 2017, 22(9), 1458.
[http://dx.doi.org/10.3390/molecules22091458] [PMID: 28869566]
[4]
Tata, R.R.; Hampton, C.S.; Harmata, M. Preparation of propargylic sulfinates and their [2,3]-sigmatropic rearrangement to allenic sulfones. Adv. Synth. Catal., 2017, 359, 1232.
[http://dx.doi.org/10.1002/adsc.201600986]
[5]
Tapia-Pineda, A.; Perez-Arrieta, C.; Silva-Cuevas, C.; Paleo, E.; Lujan-Montelongo, J.A. The two faces of sulfinates: Illustrating umpolung reactivity. J. Chem. Educ., 2016, 93, 1470.
[http://dx.doi.org/10.1021/acs.jchemed.6b00102]
[6]
Fernandez, I.; Khiar, N.; Roca, A.A.; Benabra, A.; Alcudia, A.; Espartero, J.L. AIcudia, F. A generalization of the base effect on the diastereoselective synthesis of sulfinic and phosphinic esters. Tetrahedron Lett., 1999, 40, 2029.
[http://dx.doi.org/10.1016/S0040-4039(99)00171-9]
[7]
Hajipour, A.R.; Falahati, A.R.; Ruoho, A.E. An efficient and novel method for the synthesis of sulfinate esters under solvent-free conditions. Tetrahedron Lett., 2006, 47, 2717.
[http://dx.doi.org/10.1016/j.tetlet.2006.02.080]
[8]
Wei, J.; Sun, Z. Tert-butyl sulfoxide as a starting point for the synthesis of sulfinyl containing compounds. Org. Lett., 2015, 17(21), 5396-5399.
[http://dx.doi.org/10.1021/acs.orglett.5b02743] [PMID: 26502058]
[9]
Tranquilino, A.; Andrade, S.R.C.P.; da Silva, A.P.M.; Menezes, P.H.; Oliveira, R.A. Non-expensive, open-flask and selective catalytic systems for the synthesis of sulfinate esters and thiosulfonates. Tetrahedron Lett., 2017, 58, 1265.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.025]
[10]
Du, B.; Li, Z.; Qian, P.; Han, J.; Pan, Y. Copper-catalyzed aerobic oxidative reaction of sulfonyl hydrazides with alcohols: An easy access to sulfinates. Chem. Asian J., 2016, 11(4), 478-481.
[http://dx.doi.org/10.1002/asia.201501262] [PMID: 26603671]
[11]
Brownbridge, P.; Jowett, I.C. One-pot’ synthesis of sulphinic esters from disulphides. Synthesis, 1988, 1988, 252.
[http://dx.doi.org/10.1055/s-1988-27535]
[12]
Xia, M.; Chen, Z.C. Hypervalent iodine in synthesis xxiv: a facile method for the preparation of arylsulfinic esters: Oxidation of disulfides or thiophenols by phenyliodine (iii) bis(trifluoroacetate) in the presence of alcohols. Synth. Commun., 1997, 27, 1321.
[http://dx.doi.org/10.1080/00397919708006060]
[13]
Shyam, P.K.; Kim, Y.K.; Lee, C.; Jang, H.Y. Copper-catalyzed aerobic formation of unstable sulfinyl radicals for the synthesis of sulfinates and thiosulfonates. Adv. Synth. Catal., 2016, 358, 56.
[http://dx.doi.org/10.1002/adsc.201500785]
[14]
Zhou, C.; Tan, Z.; Jiang, H.; Zhang, M. A sustainable oxidative esterification of thiols with alcohols by a cobalt nanocatalyst supported on doped carbon. Green Chem., 2018, 20, 1992.
[http://dx.doi.org/10.1039/C8GC00441B]
[15]
Wang, H.; Gao, X.; Lv, Z.; Abdelilah, T.; Lei, A. Recent advances in oxidative r1-h/r2-h cross-coupling with hydrogen evolution via photo-/electrochemistry. Chem. Rev., 2019, 119, 676.
[16]
Yan, M.; Kawamata, Y.; Baran, P.S. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. Chem. Rev., 2017, 117, 13230.
[17]
Francke, R.; Little, R.D. Redox catalysis in organic electrosynthesis: Basic principles and recent developments. Chem. Soc. Rev., 2014, 43, 2492.
[http://dx.doi.org/10.1039/c3cs60464k]
[18]
Laudadio, G.; Barmpoutsis, E.; Schotten, C.; Struik, L.; Govaerts, S.; Browne, D.L.; Noël, T. Sulfonamide Synthesis through electrochemical oxidative coupling of amines and thiols. J. Am. Chem. Soc., 2019, 141(14), 5664-5668.
[http://dx.doi.org/10.1021/jacs.9b02266] [PMID: 30905146]
[19]
Gong, F.; Lu, F.; Zuo, L.; Wang, Q.; Li, R.; Hu, J.; Li, Z.; Takfaoui, A.; Lei, A. Efficient electrosynthesis of sulfinic esters via oxidative cross-coupling between alcohols and thiophenols. J. Chin. Chem. Soc. (Taipei), 2020, 67, 192.
[http://dx.doi.org/10.1002/jccs.201900246]
[20]
Kowalczyk, R.; Edmunds, A.J.; Hall, R.G.; Bolm, C. Synthesis of CF3-substituted sulfoximines from sulfonimidoyl fluorides. Org. Lett., 2011, 13(4), 768-771.
[http://dx.doi.org/10.1021/ol103030w] [PMID: 21235264]
[21]
Ko, Y.K.; Koo, D.W.; Kim, J.S.; Kim, D.W. Sulfinate Esters from methoxymethyl sulfides. Synth. Commun., 1995, 25, 2871.
[http://dx.doi.org/10.1080/00397919508011835]
[22]
Trost, B.M.; Parquette, J.R. Methyl 2-pyridinesulfinate. A convenient reagent for sulfinylation-dehydrosulfinylation. J. Org. Chem., 1993, 58, 1579.
[http://dx.doi.org/10.1021/jo00058a048]
[23]
Jörissen, J.; Speiser, B. Preparative Electrolysis on the Laboratory Scale, Organic Electrochemistry, 5th ed; CRC Press, 2015.
[24]
Jana, R.; Pathak, T.P.; Sigman, M.S. Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev., 2011, 111(3), 1417-1492.
[http://dx.doi.org/10.1021/cr100327p] [PMID: 21319862]
[25]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compound. Chem. Rev., 1995, 95, 2457.
[http://dx.doi.org/10.1021/cr00039a007]
[26]
Huang, P.; Wang, P.; Tang, S.; Fu, Z.; Lei, A. Electro-oxidative s-h/s-h cross-coupling with hydrogen evolution: facile access to unsymmetrical disulfides. Angew. Chem. Int. Ed. Engl., 2018, 57(27), 8115-8119.
[http://dx.doi.org/10.1002/anie.201803464] [PMID: 29740920]
[27]
Li, Y.; Yang, Q.; Yang, L.; Lei, N.; Zheng, K. A scalable electrochemical dehydrogenative cross-coupling of P(O)H compounds with RSH/ROH. Chem. Commun. (Camb.), 2019, 55(34), 4981-4984.
[http://dx.doi.org/10.1039/C9CC01378D] [PMID: 30968096]
[28]
Mo, Z-Y.; Swaroop, T.R.; Tong, W.; Zhang, Y-Z.; Tang, H-T.; Pan, Y-M.; Sun, H-B.; Chen, Z-F. Electrochemical sulfonylation of thiols with sulfonyl hydrazides: A metal- and oxidant-free protocol for the synthesis of thiosulfonates. Green Chem., 2018, 20, 4428.
[http://dx.doi.org/10.1039/C8GC02143K]
[29]
Liang, S.; Zeng, C-C.; Tian, H-Y.; Sun, B-G.; Luo, X-G.; Ren, F-Z. Redox active sodium iodide/recyclable heterogeneous solid Acid: An efficient dual catalytic system for electrochemically oxidative α-c-h thiocyanation and sulfenylation of ketones. Adv. Synth. Catal., 2018, 360, 1444.
[http://dx.doi.org/10.1002/adsc.201701401]
[30]
Liu, D.; Ma, H-X.; Fang, P.; Mei, T-S. Nickel-catalyzed thiolation of aryl halides and heteroaryl halides through electrochemistry.Angew. Chem. Int., 2019, 58, 5033.
[31]
Du, K-S.; Huang, J-M. Electrochemical synthesis of methyl sulfoxides from thiophenols/thiols and dimethyl sulfoxide. Green Chem., 2018, 20, 1405.
[http://dx.doi.org/10.1039/C7GC03864J]
[32]
Ai, C.; Shen, H.; Song, D.; Li, Y.; Yi, X.; Wang, Z.; Ling, F.; Zhong, W. Metal- and oxidant-free electrochemical synthesis of sulfinic esters from thiols and alcohols. Green Chem., 2019, 21, 5528.
[http://dx.doi.org/10.1039/C9GC02125F]
[33]
He, Y.; Zhang, J.; Xu, L.; Wei, Y. Electrochemical synthesis of sulfinic esters from alcohols and thiophenols. Tetrahedron Lett., 2020, 61(12), 15163.
[http://dx.doi.org/10.1016/j.tetlet.2020.151631]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy