Skip to main content
Log in

Evaluation of Microbiota and Weight Alterations After the Administration of Tetracycline and Lactobacillus gasseri in Rats

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Obesity is one of the largest current public health problems. Recent studies suggest that persistent changes in the intestinal microbiota (dysbiosis) can eventually lead to obesity. A stable core of intestinal microbiota exists, primarily composed of the phyla Firmicutes and Bacteroidetes, but their proportions can be altered by antibiotics. Such changes appear to not only alter host energy consumption but also modify host satiety mechanisms. Our study evaluated possible changes in the gut microbiota caused by oral administration of tetracycline, both alone or in combination with Lactobacillus gasseri in rats. Zoometric analyses were conducted and qPCR of fecal samples were analyzed to allow comparison before and during treatment regarding Firmicutes Bacteroidetes proportions. The results showed increased weight and body mass index (BMI) in animals treated with tetracycline alone (P < 0.05) when compared to the group that received tetracycline with probiotic, except for BMI in phase two when there was no statistical significance. Molecular analysis showed that after animals were treated with tetracycline, Firmicutes predominated over Bacteroidetes bacteria, which was coincident with increased weight and BMI. Probiotic addition may have minimized tetracycline dysbiosis, preventing excessive weight gain. Changes in microbiota caused by antibiotics have been shown to be an important factor related to childhood obesity. Microbiological manipulation of microbiota can play an important role in weight control, especially with antibiotic acting microbiota. More studies are needed to elucidate this mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Murphy EF, Clarke SF, Marques TM, Hill C, Stanton C, Ross RP, O'Doherty RM, Shanahan F, Cotter PD (2013) Antimicrobials: strategies for targeting obesity and metabolic health? Gut Microbes 4(1):48–53. https://doi.org/10.4161/gmic.22328

    Article  PubMed  PubMed Central  Google Scholar 

  2. Riley LW, Raphael E, Faerstein E (2013) Obesity in the United States—dysbiosis from exposure to low-dose antibiotics? Front Public Health 1:69. https://doi.org/10.3389/fpubh.2013.00069

    Article  PubMed  PubMed Central  Google Scholar 

  3. Robinson CJ, Young VB (2010) Antibiotic administration alters the community structure of the gastrointestinal micobiota. Gut Microbes 1(4):279–284. https://doi.org/10.4161/gmic.1.4.12614

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rettedal E, Vilain S, Lindblom S, Lehnert K, Scofield C, George S, Clay S, Kaushik RS, Rosa AJ, Francis D, Brozel VS (2009) Alteration of the ileal microbiota of weanling piglets by the growth-promoting antibiotic chlortetracycline. Appl Environ Microbiol 75(17):5489–5495. https://doi.org/10.1128/aem.02220-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, Li H, Alekseyenko AV, Blaser MJ (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488(7413):621–626. https://doi.org/10.1038/nature11400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ (2013) Infant antibiotic exposures and early-life body mass. Int J Obes (Lond) 37(1):16–23. https://doi.org/10.1038/ijo.2012.132

    Article  CAS  Google Scholar 

  7. Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227. https://doi.org/10.1038/nrmicro2974

    Article  PubMed  CAS  Google Scholar 

  8. Guinane CM, Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap Adv Gastroenterol 6(4):295–308. https://doi.org/10.1177/1756283x13482996

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121(6):2126–2132. https://doi.org/10.1172/jci58109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lankelma JM, Nieuwdorp M, de Vos WM, Wiersinga WJ (2014) The gut microbiota in sickness and health. Ned Tijdschr Geneeskd 157:A5901

    PubMed  Google Scholar 

  11. Putignani L, Del Chierico F, Petrucca A, Vernocchi P, Dallapiccola B (2014) The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatr Res 76(1):2–10. https://doi.org/10.1038/pr.2014.49

    Article  PubMed  Google Scholar 

  12. Quigley EM (2013) Gut bacteria in health and disease. Gastroenterol Hepatol (N Y) 9(9):560–569

    Google Scholar 

  13. Agans R, Rigsbee L, Kenche H, Michail S, Khamis HJ, Paliy O (2011) Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol Ecol 77(2):404–412. https://doi.org/10.1111/j.1574-6941.2011.01120.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vael C, Verhulst SL, Nelen V, Goossens H, Desager KN (2011) Intestinal microflora and body mass index during the first three years of life: an observational study. Gut Pathog 3(1):8. https://doi.org/10.1186/1757-4749-3-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339(6123):1084–1088. https://doi.org/10.1126/science.1233521

    Article  PubMed  CAS  Google Scholar 

  16. Grzeskowiak L, Collado MC, Mangani C, Maleta K, Laitinen K, Ashorn P, Isolauri E, Salminen S (2012) Distinct gut microbiota in southeastern African and northern European infants. J Pediatr Gastroenterol Nutr 54(6):812–816. https://doi.org/10.1097/MPG.0b013e318249039c

    Article  PubMed  Google Scholar 

  17. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920. https://doi.org/10.1126/science.1104816

    Article  PubMed  CAS  Google Scholar 

  18. Angelakis E, Armougom F, Million M, Raoult D (2012) The relationship between gut microbiota and weight gain in humans. Future Microbiol 7(1):91–109. https://doi.org/10.2217/fmb.11.142

    Article  PubMed  Google Scholar 

  19. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484. https://doi.org/10.1038/nature07540

    Article  PubMed  CAS  Google Scholar 

  20. Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, Pang X, Zhang M, Wei H, Chen Y, Lu H, Zuo J, Su M, Qiu Y, Jia W, Xiao C, Smith LM, Yang S, Holmes E, Tang H, Zhao G, Nicholson JK, Li L, Zhao L (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105(6):2117–2122. https://doi.org/10.1073/pnas.0712038105

    Article  PubMed  Google Scholar 

  21. Collado MC, Isolauri E, Laitinen K, Salminen S (2008) Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88(4):894–899

    Article  CAS  Google Scholar 

  22. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18(1):190–195. https://doi.org/10.1038/oby.2009.167

    Article  Google Scholar 

  23. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023. https://doi.org/10.1038/4441022a

    Article  PubMed  CAS  Google Scholar 

  24. Xu P, Li M, Zhang J, Zhang T (2012) Correlation of intestinal microbiota with overweight and obesity in Kazakh school children. BMC Microbiol 12:283. https://doi.org/10.1186/1471-2180-12-283

    Article  PubMed  PubMed Central  Google Scholar 

  25. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3(4):213–223. https://doi.org/10.1016/j.chom.2008.02.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bibiloni MD, Pons A, Tur JA (2013) Prevalence of overweight and obesity in adolescents: a systematic review. ISRN Obes 2013:392747. https://doi.org/10.1155/2013/392747

    Article  PubMed Central  Google Scholar 

  27. Voreades N, Kozil A, Weir TL (2014) Diet and the development of the human intestinal microbiome. Front Microbiol 5:494. https://doi.org/10.3389/fmicb.2014.00494

    Article  PubMed  PubMed Central  Google Scholar 

  28. Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D (2012) Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb Pathog 53(2):100–108. https://doi.org/10.1016/j.micpath.2012.05.007

    Article  PubMed  Google Scholar 

  29. Lara-Villoslada F, Sierra S, Martin R, Delgado S, Rodriguez JM, Olivares M, Xaus J (2007) Safety assessment of two probiotic strains, Lactobacillus coryniformis CECT5711 and Lactobacillus gasseri CECT5714. J Appl Microbiol 103(1):175–184. https://doi.org/10.1111/j.1365-2672.2006.03225.x

    Article  PubMed  CAS  Google Scholar 

  30. Lauer E, Kandler O (1980) Lactobacillus gasseri sp. Nov., a new species of the subgenus Thermobacterium. Zentralblatt für Bakteriologie: I Abt Originale C 1(1):75–78. https://doi.org/10.1016/S0172-5564(80)80019-4

    Article  Google Scholar 

  31. Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K (2008) Development of a real-time PCR method for firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol 47(5):367–373. https://doi.org/10.1111/j.1472-765X.2008.02408.x

    Article  PubMed  CAS  Google Scholar 

  32. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71(7):4117–4120. https://doi.org/10.1128/aem.71.7.4117-4120.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani F, Fernandes AA, Cicogna AC, Novelli Filho JL (2007) Anthropometrical parameters and markers of obesity in rats. Lab Anim 41(1):111–119. https://doi.org/10.1258/002367707779399518

    Article  PubMed  CAS  Google Scholar 

  34. Bernardis LL (1970) Prediction of carcass fat, water and lean body mass from Lee's "nutritive ratio" in rats with hypothalamic obesity. Experientia 26(7):789–790

    Article  CAS  Google Scholar 

  35. Schwartz BS, Pollak J, Bailey-Davis L, Hirsch AG, Cosgrove SE, Nau C, Kress AM, Glass TA, Bandeen-Roche K (2016) Antibiotic use and childhood body mass index trajectory. Int J Obes (Lond) 40(4):615–621. https://doi.org/10.1038/ijo.2015.218

    Article  CAS  Google Scholar 

  36. Scott FI, Horton DB, Mamtani R, Haynes K, Goldberg DS, Lee DY, Lewis JD (2016) Administration of antibiotics to children before age 2 years increases risk for childhood obesity. Gastroenterology 151(1):120–129.e125. https://doi.org/10.1053/j.gastro.2016.03.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H (2015) Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics 135(4):617–626. https://doi.org/10.1542/peds.2014-3407

    Article  PubMed  Google Scholar 

  38. Marciano JJ, Fiol FD, Ferreira ACMT, Marques MC, Santana LL (2017) Changes in weight and body fat after use of tetracycline and Lactobacillus gasseri in rats. Braz J Pharm Sci. https://doi.org/10.1590/s2175-97902017000116059

    Article  Google Scholar 

  39. Murphy R, Stewart AW, Braithwaite I, Beasley R, Hancox RJ, Mitchell EA (2014) Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. Int J Obes (Lond) 38(8):1115–1119. https://doi.org/10.1038/ijo.2013.218

    Article  Google Scholar 

  40. Perrini F (1951) Aureomycin as growth factor in prematures. Boll Soc Ital Biol Sper 27(7–8):1151–1152

    PubMed  CAS  Google Scholar 

  41. Southern KW, Barker PM, Solis-Moya A, Patel L (2012) Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst Rev 11:CD002203. https://doi.org/10.1002/14651858.CD002203.pub4

    Article  PubMed  Google Scholar 

  42. Macdougall LG (1957) The effect of aureomycin on undernourished African children. J Trop Pediatr 3(2):74–81

    Article  CAS  Google Scholar 

  43. Garly ML, Bale C, Martins CL, Whittle HC, Nielsen J, Lisse IM, Aaby P (2006) Prophylactic antibiotics to prevent pneumonia and other complications after measles: community based randomised double blind placebo controlled trial in Guinea-Bissau. BMJ 333(7581):1245. https://doi.org/10.1136/bmj.38989.684178.AE

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. de Sa Del Fiol FD, Ferreira AC, Marciano JJ, Marques MC, SantʼAna LL (2014) Obesity and the use of antibiotics and probiotics in rats. Chemotherapy 60(3):162–167. https://doi.org/10.1159/000371737

    Article  PubMed  CAS  Google Scholar 

  45. Breton J, Tennoune N, Lucas N, Francois M, Legrand R, Jacquemot J, Goichon A, Guerin C, Peltier J, Pestel-Caron M, Chan P, Vaudry D, do Rego JC, Lienard F, Penicaud L, Fioramonti X, Ebenezer IS, Hokfelt T, Dechelotte P, Fetissov SO (2016) Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab 23(2):324–334. https://doi.org/10.1016/j.cmet.2015.10.017

    Article  PubMed  CAS  Google Scholar 

  46. Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, Gavalko Y, Dorofeyev A, Romanenko M, Tkach S, Sineok L, Lushchak O, Vaiserman A (2017) Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol 17(1):120. https://doi.org/10.1186/s12866-017-1027-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, Tameda M, Shiraki K, Ito M, Takei Y, Takase K (2015) Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol 15:100. https://doi.org/10.1186/s12876-015-0330-2

    Article  PubMed  PubMed Central  Google Scholar 

  48. Louis S, Tappu RM, Damms-Machado A, Huson DH, Bischoff SC (2016) Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLoS ONE 11(2):e0149564. https://doi.org/10.1371/journal.pone.0149564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, Okano M, Kagoshima M, Tsuchida T (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64(6):636–643. https://doi.org/10.1038/ejcn.2010.19

    Article  PubMed  CAS  Google Scholar 

  50. Jung SP, Lee KM, Kang JH, Yun SI, Park HO, Moon Y, Kim JY (2013) Effect of Lactobacillus gasseri BNR17 on overweight and obese adults: a randomized, double-blind clinical trial. Korean J Fam Med 34(2):80–89. https://doi.org/10.4082/kjfm.2013.34.2.80

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kang JH, Yun SI, Park MH, Park JH, Jeong SY, Park HO (2013) Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS ONE 8(1):e54617. https://doi.org/10.1371/journal.pone.0054617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kang JH, Yun SI, Park HO (2010) Effects of Lactobacillus gasseri BNR17 on body weight and adipose tissue mass in diet-induced overweight rats. J Microbiol 48(5):712–714. https://doi.org/10.1007/s12275-010-0363-8

    Article  PubMed  Google Scholar 

  53. Hamad EM, Sato M, Uzu K, Yoshida T, Higashi S, Kawakami H, Kadooka Y, Matsuyama H, Abd El-Gawad IA, Imaizumi K (2009) Milk fermented by Lactobacillus gasseri SBT2055 influences adipocyte size via inhibition of dietary fat absorption in Zucker rats. Br J Nutr 101(5):716–724. https://doi.org/10.1017/s0007114508043808

    Article  PubMed  CAS  Google Scholar 

  54. Sato M, Uzu K, Yoshida T, Hamad EM, Kawakami H, Matsuyama H, Abd El-Gawad IA, Imaizumi K (2008) Effects of milk fermented by Lactobacillus gasseri SBT2055 on adipocyte size in rats. Br J Nutr 99(5):1013–1017. https://doi.org/10.1017/s0007114507839006

    Article  PubMed  CAS  Google Scholar 

  55. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075. https://doi.org/10.1073/pnas.0504978102

    Article  PubMed  CAS  Google Scholar 

  56. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Sa Del Fiol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olimpio, F.S., Del Fiol, F.S., Lima, R. et al. Evaluation of Microbiota and Weight Alterations After the Administration of Tetracycline and Lactobacillus gasseri in Rats. Curr Microbiol 77, 2449–2455 (2020). https://doi.org/10.1007/s00284-020-02090-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02090-4

Navigation