Skip to main content

Advertisement

Log in

Virulence Conferred by PumA Toxin from the Plasmid-Encoded PumAB Toxin-Antitoxin System is Regulated by Quorum System

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Toxin-antitoxin (TA) systems are small genetic elements composed of a toxin gene and its cognate antitoxin that are important for plasmid stabilization (plasmid-encoded) and bacterial virulence (chromosome-encoded). These systems are also related to biofilm and persister cell formations. Pseudomonas aeruginosa is an antibiotic-resistant human pathogen that produces virulence factors modulated by quorum sensing (QS) and can form biofilms. The type II PumAB TA system of pUM505, isolated from a clinical strain of P. aeruginosa, confers plasmid stability. Additionally, the PumA toxin increases P. aeruginosa virulence and is neutralized by the PumB antitoxin. In this study, we determined whether virulence conferred by PumA toxin is regulated by QS. The pumA gene was transferred to P. aeruginosa lasI/rhlI, a mutant strain in the LasI and RhlI QS systems, to analyze the effect on virulence of the transformants. pumA transfer did not increase bacterial virulence in lettuce and Caenorhabditis elegans, suggesting that the virulence conferred by PumA requires QS modulation. pumA mRNA levels drastically decreased in the P. aeruginosa lasI/rhlI (pUC_pumA) strain, suggesting positive regulation of pumA gene expression by QS. Supplementation of the growth medium of P. aeruginosa lasI/rhlI (pUC_pumA) with C4-AHL and 3-oxo-C12-AHL autoinducers increased pumA mRNA levels and restored bacterial virulence, suggesting that both autoinducers complemented the mutations and positively regulated the toxic effects of PumA. This strengthened the hypothesis that QS regulates bacterial virulence conferred by the PumA toxin. Thus, this report establishes an important function of QS in the virulence conferred by plasmid-encoded TA systems in bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pendleton JN, Gorman SP, Gilmore BF (2013) Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11:297–308

    Article  CAS  Google Scholar 

  2. Quick J, Cumley N, Wearn CM, Niebel N, Constantinidou C, Thomas CM, Palle M, Moiemen NS, Bamford A, Oppenheim B, Loman NJ (2014) Seeking the source of Pseudomonas aeruginosa infections in a recently opened hospital: an observational study using whole-genome sequencing. BMJ Open 4(11):e006278

    Article  Google Scholar 

  3. Rahme LG, Ausubel FM, Cao H, Drenkard E, Goumnerov BC, Lau GW, Mahajan-Miklos S, Plotnikova J, Tan MW, Tsongalis J, Walendziewicz CL, Tompkins RG (2000) Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci USA 97:8815–8821

    Article  CAS  Google Scholar 

  4. Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6(1):26–41

    Article  CAS  Google Scholar 

  5. Antunes LCM, Ferreira RBR, Buckner MMC, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156:2271–2282

    Article  CAS  Google Scholar 

  6. Leplae R, Geeraerts D, Hallez R, Guglielmini J, Drèze P, Van Melderen L (2011) Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res 39:5513–5525

    Article  CAS  Google Scholar 

  7. Page R, Peti W (2016) Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 12:208–214

    Article  CAS  Google Scholar 

  8. Fernández-García L, Blasco L, Lopez M, Bou G, García-Contreras R, Wood T, Tomas M (2016) Toxin-antitoxin systems in clinical pathogens. Toxins 8(7):227

    Article  CAS  Google Scholar 

  9. Yamaguchi Y, Park JH, Inouye M (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45:61–79

    Article  CAS  Google Scholar 

  10. Unterholzner SJ, Poppenberger B, Rozhon W (2013) Toxin-antitoxin systems: biology, identification, and application. Mob Genet Elem 1(3):e26219

    Article  CAS  Google Scholar 

  11. De la Cruz MA, Zhao W, Farenc C, Giménez G, Raoult D, Cambillau C, Gorvel JP, Méresse S (2013) A toxin-antitoxin module of Salmonella promotes virulence in mice. PLOS Pathog 9(12):e1003827

    Article  CAS  Google Scholar 

  12. Wang X, Wood TK (2011) Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol 77(16):5577–5583

    Article  CAS  Google Scholar 

  13. Hemati S, Azizi-Jalilian F, Pakzad I, Taherikalani M, Maleki A, Karimi S, Monjezei A, Mahdavi Z, Reza Fadavi M, Sayehmiri K, Sadeghifard N (2014) The correlation between the presence of quorum sensing, toxin-antitoxin system genes and MIC values with ability of biofilm formation in clinical isolates of Pseudomonas aeruginosa. Iran J Microbiol 6(3):133–139

    PubMed  PubMed Central  Google Scholar 

  14. Hernández-Ramírez KC, Chávez-Jacobo VM, Valle-Maldonado MI, Patiño-Medina JA, Díaz-Pérez SP, Jácome-Galarza IE, Ortiz-Alvarado R, Meza-Carmen V, Ramírez-Díaz MI (2017) Plasmid pUM505 encodes a Toxin-Antitoxin system conferring plasmid stability and increased Pseudomonas aeruginosa virulence. Microb Pathog 112:259–268

    Article  CAS  Google Scholar 

  15. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  16. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2000–2007

    Article  Google Scholar 

  17. Rodríguez-Andrade E, Hernández-Ramírez KC, Díaz-Peréz SP, Díaz-Magaña A, Chávez-Moctezuma MP, Meza-Carmen V, Ortíz-Alvarado R, Cervantes C, Ramírez-Díaz MI (2016) Genes from pUM505 plasmid contribute to Pseudomonas aeruginosa virulence. Antonie Van Leeuwenhoek 109:389–396

    Article  CAS  Google Scholar 

  18. Battle SE, Meyer F, Rello J, Kung VL, Hauser AR (2008) Hybrid pathogenicity island PAGI-5 contributes to the highly virulent phenotype of a Pseudomonas aeruginosa isolate in mammals. J Bacteriol 190:7130–7140

    Article  CAS  Google Scholar 

  19. Dong X, Mindrinos M, Davis KR, Ausubel FM (1991) Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned virulence gene. Plant Cell 3:61–72

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Stiernagle T (2006) Maintenance of C. elegans. Worm Book, pp. 1–11.

  22. Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 91:197–201

    Article  CAS  Google Scholar 

  23. Erdönmez D, Rad AY, Aksöz N (2017) Quorum sensing molecules production by nosocomial and soil isolates Acinetobacter baumannii. Arch Microbiol 199(10):1325–1334

    Article  CAS  Google Scholar 

  24. Boşgelmez-Tinaz G, Ulusoy S, Aridoğan B, Eroğlu F, Kaya S (2005) N-butanoyl-L-homoserine lactone (BHL) deficient Pseudomonas aeruginosa isolates from an intensive care unit. Microbiol Res 160(4):399–403

    Article  CAS  Google Scholar 

  25. Ramírez-Díaz MI, Díaz-Magaña A, Meza-Carmen V, Johnstone L, Cervantes C, Rensing C (2011) Nucleotide sequence of Pseudomonas aeruginosa conjugative plasmid pUM505 containing virulence and heavy-metal resistance genes. Plasmid 66(1):7–18

    Article  CAS  Google Scholar 

  26. Otsuka Y (2016) Prokaryotic toxin-antitoxin systems: novel regulations of the toxins. Curr Genet 62(2):379–382

    Article  CAS  Google Scholar 

  27. Wen Y, Behiels E, Devreese B (2014) Toxin-Antitoxin systems: Their role in persistence, biofilm formation, and pathogenicity. Pathog Dis 70:240–249

    Article  CAS  Google Scholar 

  28. Kedzierska B, Hayes F (2016) Emerging roles of toxin–antitoxin modules in bacterial pathogenesis. Molecules 21:790

    Article  CAS  Google Scholar 

  29. Lazazzera BA (2000) Quorum sensing and starvation: signals for entry into stationary phase. Curr Opin Microbiol 3(2):177–182

    Article  CAS  Google Scholar 

  30. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    Article  CAS  Google Scholar 

  31. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    Article  CAS  Google Scholar 

  32. Deng Y, Wu J, Tao F, Zhang LH (2011) Listening to a new language: DSF-based quorum sensing in gram-negative bacteria. Chem Rev 111:160–173

    Article  CAS  Google Scholar 

  33. Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signaling in bacteria. FEMS Microbiol Rev 37:156–181

    Article  CAS  Google Scholar 

  34. Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum- controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    Article  CAS  Google Scholar 

  35. Schuster M, Greenberg EP (2006) A network of networks: quorumsensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Coordinación de la Investigación Científica (UMSNH; 2.6 and 2.35). KCH-R and MIV-M were supported by postgraduate fellowships from CONACYT.

Author information

Authors and Affiliations

Authors

Contributions

KC H-R, B V-A and MI V-M, data acquisition, analysis, and data interpretation, LF R-H and V M-C, reagents, analysis; V M-C data interpretation, and critical revision of the article for intellectual content; MI R-D, conception and design of the work, data analysis and interpretation, and drafting of the article.

Corresponding author

Correspondence to Martha I. Ramírez-Díaz.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Ramírez, K.C., Valerio-Arellano, B., Valle-Maldonado, M.I. et al. Virulence Conferred by PumA Toxin from the Plasmid-Encoded PumAB Toxin-Antitoxin System is Regulated by Quorum System. Curr Microbiol 77, 2535–2543 (2020). https://doi.org/10.1007/s00284-020-02083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02083-3

Navigation