Skip to main content

Advertisement

Log in

miR-194-5p inhibits LPS-induced astrocytes activation by directly targeting neurexophilin 1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Astrocytes are vitally involved in the development of neurodegenerative diseases and brain cancers. In this work, we investigated the potential ameliorative role of microRNA-194-5p (miR-194-5p) against lipopolysaccharide (LPS)-induced astrocytes activation and the mechanism underneath. Astrocytes were transfected with miR-194-5p mimic or inhibitor and subsequently induced with LPS. Cell proliferation was measured using MTT assay while Transwell assay was used for assessing cell migration. The concentrations of cyclooxygenase 2 (COX2) and cytokines (tumor necrosis factor-α (TNF-α), transforming growth factor β (TGF-β), interleukin (IL)-1β and IL-6) were determined by enzyme-linked immunosorbent assay (ELISA). Gene expression was assessed by quantitative reverse transcription PCR (RT-qPCR) while western blotting was used for quantifying relative protein expression. We found that miR-194-5p, downregulated in LPS-induced astrocytes, significantly inhibited LPS-induced cell proliferation and migration. In addition, miR-194-5p inhibited the release of COX2 and pro-inflammatory cytokines (TNF-α, TGF-β, IL-1β and IL-6). Moreover, the silencing of neurexophilin 1 (NXPH1), an in silico and mechanistically confirmed direct target of miR-194-5p, reverted the anti-inflammatory, anti-proliferative and anti-migratory effects of miR-194-5p. We anticipated that miR-194–5 inhibits the proliferation, invasion, and inflammatory reaction in LPS-induced astrocytes by directly targeting NXPH1. These findings hinted that miR-194-5p/NXPH1 axis exerts vital functions in astrocytes activation and neuroinflammation-associated diseases. This finding will open novel avenues for biomedical and neuroscience research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Birch AM (2014) The contribution of astrocytes to Alzheimer's disease. Biochem Soc Trans 42(5):1316–1320. https://doi.org/10.1042/bst20140171

    Article  CAS  PubMed  Google Scholar 

  2. Bulc Rozman K, Juric DM, Suput D (2017) Selective cytotoxicity of microcystins LR, LW and LF in rat astrocytes. Toxicol Lett 265:1–8. https://doi.org/10.1016/j.toxlet.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  3. Filous AR, Silver J (2016) Targeting astrocytes in CNS injury and disease: a translational research approach. Prog Neurobiol 144:173–187. https://doi.org/10.1016/j.pneurobio.2016.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Phillips EC, Croft CL, Kurbatskaya K, O'Neill MJ, Hutton ML, Hanger DP, Garwood CJ, Noble W (2014) Astrocytes and neuroinflammation in Alzheimer's disease. Biochem Soc Trans 42(5):1321–1325. https://doi.org/10.1042/bst20140155

    Article  CAS  PubMed  Google Scholar 

  5. Burda JE, Bernstein AM, Sofroniew MV (2016) Astrocyte roles in traumatic brain injury. Exp Neurol 275(Pt 3):305–315. https://doi.org/10.1016/j.expneurol.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  6. Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173(4):692–702. https://doi.org/10.1111/bph.13125

    Article  CAS  PubMed  Google Scholar 

  7. Danka Mohammed CP, Park JS, Nam HG, Kim K (2017) MicroRNAs in brain aging. Mech Ageing Dev 168:3–9. https://doi.org/10.1016/j.mad.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  8. Quinlan S, Kenny A, Medina M, Engel T, Jimenez-Mateos EM (2017) MicroRNAs in neurodegenerative diseases. Int Rev Cell Mol Biol 334:309–343. https://doi.org/10.1016/bs.ircmb.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  9. Yoon H, Flores LF, Kim J (2016) MicroRNAs in brain cholesterol metabolism and their implications for Alzheimer's disease. Biochem Biophys Acta 1861(12 Pt B):2139–2147. https://doi.org/10.1016/j.bbalip.2016.04.020

    Article  CAS  PubMed  Google Scholar 

  10. Zhai H, Karaayvaz M, Dong P, Sakuragi N, Ju J (2013) Prognostic significance of miR-194 in endometrial cancer. Biomark Res 1(1):12–12

    Article  Google Scholar 

  11. Bus P, Kestens C, Kate FJWT, Peters W, Drenth JPH, Roodhart JML, Siersema PD, Baal JWPMV (2016) Profiling of circulating microRNAs in patients with Barrett’s esophagus and esophageal adenocarcinoma. J Gastroenterol 51(6):560–570

    Article  CAS  Google Scholar 

  12. Bao J, Zou JH, Li CY, Zheng GQ (2016) miR-194 inhibits gastric cancer cell proliferation and tumorigenesis by targeting KDM5B. Eur Rev Med Pharmacol Sci 20(21):4487

    CAS  PubMed  Google Scholar 

  13. Su R, Cao S, Ma J, Liu Y, Liu X, Zheng J, Chen J, Liu L, Cai H, Li Z, Zhao L, He Q, Xue Y (2017) Knockdown of SOX2OT inhibits the malignant biological behaviors of glioblastoma stem cells via up-regulating the expression of miR-194-5p and miR-122. Mol Cancer 16(1):171. https://doi.org/10.1186/s12943-017-0737-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qu F, Cao P (2018) Long noncoding RNA SOX2OT contributes to gastric cancer progression by sponging miR-194-5p from AKT2. Exp Cell Res 369(2):187–196. https://doi.org/10.1016/j.yexcr.2018.05.017

    Article  CAS  PubMed  Google Scholar 

  15. Wei R, Ding C, Rodriguez RA, Del Mar Requena Mullor M (2018) The SOX2OT/miR-194-5p axis regulates cell proliferation and mobility of gastric cancer through suppressing epithelial-mesenchymal transition. Oncol Lett 16(5):6361–6368. https://doi.org/10.3892/ol.2018.9433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Missler M, Hammer RE, Sudhof TC (1998) Neurexophilin binding to alpha-neurexins. A single LNS domain functions as an independently folding ligand-binding unit. J Biol Chem 273(52):34716–34723

    Article  CAS  Google Scholar 

  17. Reissner C, Stahn J, Breuer D, Klose M, Pohlentz G, Mormann M, Missler M (2014) Dystroglycan binding to alpha-neurexin competes with neurexophilin-1 and neuroligin in the brain. J Biol Chem 289(40):27585–27603. https://doi.org/10.1074/jbc.M114.595413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beglopoulos V, Montag-Sallaz M, Rohlmann A, Piechotta K, Ahmad M, Montag D, Missler M (2005) Neurexophilin 3 is highly localized in cortical and cerebellar regions and is functionally important for sensorimotor gating and motor coordination. Mol Cell Biol 25(16):7278–7288. https://doi.org/10.1128/mcb.25.16.7278-7288.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu Z, Oh SY, Zheng T, Kim YK (2010) Immunomodulating effects of endotoxin in mouse models of allergic asthma. Clin Exp Allergy 40(4):536–546

    Article  CAS  Google Scholar 

  20. Espinosa-Oliva AM, Pablos RMD, Herrera AJ (2013) Intracranial injection of LPS in rat as animal model of neuroinflammation. Methods Mol Biol 1041:295

    Article  CAS  Google Scholar 

  21. Salvesen Ø, Reiten MR, Heegaard PMH, Tranulis MA, Espenes A, Skovgaard K, Ersdal C (2016) Activation of innate immune genes in caprine blood leukocytes after systemic endotoxin challenge. BMC Vet Res 12(1):241

    Article  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif) 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  23. Forsyth CB, Banan A, Farhadi A, Fields JZ, Tang Y, Shaikh M, Zhang L, Engen PA, Keshavarzian A (2007) Regulation of oxidant-induced intestinal permeability by metalloprotease-dependent epidermal growth factor receptor signaling. J Pharmacol Exp Ther 321(1):84–97

    Article  CAS  Google Scholar 

  24. Ouyang YB, Xu L, Liu S, Giffard RG (2014) Role of astrocytes in delayed neuronal death: GLT-1 and its novel regulation by MicroRNAs. Adv Neurobiol 11:171–188. https://doi.org/10.1007/978-3-319-08894-5_9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ouyang YB, Xu L, Yue S, Liu S, Giffard RG (2014) Neuroprotection by astrocytes in brain ischemia: importance of microRNAs. Neurosci Lett 565:53–58. https://doi.org/10.1016/j.neulet.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  26. Shipman L (2015) Microenvironment: astrocytes silence PTEN to promote brain metastasis. Nat Rev Cancer 15(12):695. https://doi.org/10.1038/nrc4045

    Article  CAS  PubMed  Google Scholar 

  27. Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ (2010) Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain 133(Pt 2):433–447. https://doi.org/10.1093/brain/awp322

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bethea JR (2000) Spinal cord injury-induced inflammation: a dual-edged sword. Prog Brain Res 128:33–42. https://doi.org/10.1016/s0079-6123(00)28005-9

    Article  CAS  PubMed  Google Scholar 

  29. Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209(2):378–388. https://doi.org/10.1016/j.expneurol.2007.06.009

    Article  CAS  PubMed  Google Scholar 

  30. Allison DJ, Gabriel DA, Klentrou P, Josse AR, Ditor DS (2017) The influence of chronic inflammation on peripheral motor nerve conduction following spinal cord injury: a randomized clinical trial. Top Spinal Cord Injury Rehabil 23(4):377–385. https://doi.org/10.1310/sci16-00045

    Article  Google Scholar 

  31. DePaul MA, Palmer M, Lang BT, Cutrone R, Tran AP, Madalena KM, Bogaerts A, Hamilton JA, Deans RJ, Mays RW, Busch SA, Silver J (2015) Intravenous multipotent adult progenitor cell treatment decreases inflammation leading to functional recovery following spinal cord injury. Sci Rep 5:16795. https://doi.org/10.1038/srep16795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goldshmit Y, Kanner S, Zacs M, Frisca F, Pinto AR, Currie PD, Pinkas-Kramarski R (2015) Rapamycin increases neuronal survival, reduces inflammation and astrocyte proliferation after spinal cord injury. Mol Cell Neurosci 68:82–91. https://doi.org/10.1016/j.mcn.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  33. Grau JW, Huie JR, Lee KH, Hoy KC, Huang YJ, Turtle JD, Strain MM, Baumbauer KM, Miranda RM, Hook MA, Ferguson AR, Garraway SM (2014) Metaplasticity and behavior: how training and inflammation affect plastic potential within the spinal cord and recovery after injury. Front Neural Circ 8:100. https://doi.org/10.3389/fncir.2014.00100

    Article  Google Scholar 

  34. Hausmann ON (2003) Post-traumatic inflammation following spinal cord injury. Spinal Cord 41(7):369–378. https://doi.org/10.1038/sj.sc.3101483

    Article  CAS  PubMed  Google Scholar 

  35. Dumont CM, Margul DJ, Shea LD (2016) Tissue engineering approaches to modulate the inflammatory milieu following spinal cord injury. Cells Tissues Organs 202(1–2):52–66. https://doi.org/10.1159/000446646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kotaka K, Nagai J, Hensley K, Ohshima T (2017) Lanthionine ketimine ester promotes locomotor recovery after spinal cord injury by reducing neuroinflammation and promoting axon growth. Biochem Biophys Res Commun 483(1):759–764. https://doi.org/10.1016/j.bbrc.2016.12.069

    Article  CAS  PubMed  Google Scholar 

  37. Li G, Che MT, Zhang K, Qin LN, Zhang YT, Chen RQ, Rong LM, Liu S, Ding Y, Shen HY, Long SM, Wu JL, Ling EA, Zeng YS (2016) Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomaterials 83:233–248. https://doi.org/10.1016/j.biomaterials.2015.11.059

    Article  CAS  PubMed  Google Scholar 

  38. Brumm AJ, Nunez S, Doroudchi MM, Kawaguchi R, Duan J, Pellegrini M, Lam L, Carmichael ST, Deb A, Hinman JD (2017) Astrocytes can adopt endothelial cell fates in a p53-dependent manner. Mol Neurobiol 54(6):4584–4596. https://doi.org/10.1007/s12035-016-9974-3

    Article  CAS  PubMed  Google Scholar 

  39. Luarte A, Cisternas P, Caviedes A, Batiz LF, Lafourcade C, Wyneken U, Henzi R (2017) Astrocytes at the hub of the stress response: potential modulation of neurogenesis by miRNAs in astrocyte-derived exosomes. Stem Cells Int 2017:1719050. https://doi.org/10.1155/2017/1719050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marcuzzo S, Kapetis D, Mantegazza R, Baggi F, Bonanno S, Barzago C, Cavalcante P, Kerlero de Rosbo N, Bernasconi P (2014) Altered miRNA expression is associated with neuronal fate in G93A-SOD1 ependymal stem progenitor cells. Exp Neurol 253:91–101. https://doi.org/10.1016/j.expneurol.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  41. Pilakka-Kanthikeel S, Raymond A, Atluri VS, Sagar V, Saxena SK, Diaz P, Chevelon S, Concepcion M, Nair M (2015) Sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1)-facilitated HIV restriction in astrocytes is regulated by miRNA-181a. J Neuroinflamm 12:66. https://doi.org/10.1186/s12974-015-0285-9

    Article  CAS  Google Scholar 

  42. Song YC, Li WJ, Li LZ (2015) Regulatory effect of miRNA 320a on expression of aquaporin 4 in brain tissue of epileptic rats. Asian Pac J Trop Med 8(10):807–812. https://doi.org/10.1016/j.apjtm.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  43. Karthikeyan A, Patnala R, Jadhav SP, Eng-Ang L, Dheen ST (2016) MicroRNAs: key players in microglia and astrocyte mediated inflammation in CNS pathologies. Curr Med Chem 23(30):3528–3546

    Article  CAS  Google Scholar 

  44. Li XQ, Fang B, Tan WF, Wang ZL, Sun XJ, Zhang ZL, Ma H (2016) miR-320a affects spinal cord edema through negatively regulating aquaporin-1 of blood–spinal cord barrier during bimodal stage after ischemia reperfusion injury in rats. BMC Neurosci 17:10. https://doi.org/10.1186/s12868-016-0243-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Quinzanos-Fresnedo J, Sahagun-Olmos RC (2015) Micro RNA and its role in the pathophysiology of spinal cord injury - a further step towards neuroregenerative medicine. Cirugia y cirujanos 83(5):442–447. https://doi.org/10.1016/j.circir.2015.05.045

    Article  PubMed  Google Scholar 

  46. Wang CY, Yang SH, Tzeng SF (2015) MicroRNA-145 as one negative regulator of astrogliosis. Glia 63(2):194–205. https://doi.org/10.1002/glia.22743

    Article  PubMed  Google Scholar 

  47. Ziu M, Fletcher L, Rana S, Jimenez DF, Digicaylioglu M (2011) Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury. PLoS ONE 6(2):e14724. https://doi.org/10.1371/journal.pone.0014724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Natural Science Foundation of Jiangsu Province (Grant Number BK20161069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zuo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, Z. & Zuo, Q. miR-194-5p inhibits LPS-induced astrocytes activation by directly targeting neurexophilin 1. Mol Cell Biochem 471, 203–213 (2020). https://doi.org/10.1007/s11010-020-03780-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03780-0

Keywords

Navigation