Skip to main content
Log in

Rate of polymyxin resistance among Acinetobacter baumannii recovered from hospitalized patients: a systematic review and meta-analysis

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

We conducted a systematic review and meta-analysis to determine the rate of polymyxin resistance among Acinetobacter baumannii isolates causing infection in hospitalized patients around the world during the period of 2010–2019. The systematic review was performed on September 1, 2019, using PubMed/MEDLINE, Scopus, and Web of Science; studies published after January 1, 2010, were selected. The data were summarized in tables, critically analyzed, and treated statistically using the RStudio® Software with Meta package and Metaprop Command. After applying exclusion factors, 41 relevant studies were selected from 969 articles identified on literature search. The overall rate of polymyxin-resistant A. baumannii (PRAB) related to hospitalized patients was estimated to be 13% (95% CI, 0.06–0.27), where a higher rate was observed in America (29%; 95% CI, 0.12–0.55), followed by Europe (13%; 95% CI, 0.02–0.52), and Asia (10%; 95% CI, 0.02–0.32). The extensive use of polymyxins on veterinary to control bacterial infection and growth promotion, as well as the resurgence in prescription and use of polymyxins in the clinics against carbapenem-resistant gram-negative bacteria, may have contributed to the increased incidence of PRAB. The findings of this meta-analysis revealed that the rate of PRAB recovered from hospitalized patients is distinctively high. Thus, action needs to be taken to develop strategies to combat the clinical incidence of PRAB-induced hospital infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Howard A, O’Donoghue M, Feeney A, Sleator RD (2012) Acinetobacter baumannii. Virulence 3:243–250. https://doi.org/10.4161/viru.19700

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sousa C, Botelho J, Silva L et al (2014) MALDI-TOF MS and chemometric based identification of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex species. Int J Med Microbiol 304:669–677. https://doi.org/10.1016/j.ijmm.2014.04.014

    Article  CAS  PubMed  Google Scholar 

  3. Jung J, Park W (2015) Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Appl Microbiol Biotechnol 99:2533–2548. https://doi.org/10.1007/s00253-015-6439-y

    Article  CAS  PubMed  Google Scholar 

  4. Espinal P, Martí S, Vila J (2012) Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J Hosp Infect 80:56–60. https://doi.org/10.1016/j.jhin.2011.08.013

    Article  CAS  PubMed  Google Scholar 

  5. Urban C, Go E, Mariano N et al (1993) Effect of sulbactam on infections caused by imipenem-resistant Acinetobacter calcoaceticus biotype anitratus. J Infect Dis 167:448–451

    Article  CAS  Google Scholar 

  6. Lima WG, Silva Alves GC, Sanches C et al (2019) Carbapenem-resistant Acinetobacter baumannii in patients with burn injury: a systematic review and meta-analysis. Burns. https://doi.org/10.1016/j.burns.2019.07.006

  7. Vogler K, Studer RO (1966) The chemistry of the polymyxin antibiotics. Experientia 22:345–354

    Article  CAS  Google Scholar 

  8. Olaitan AO, Morand S, Rolain J-M (2014) Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 5:643. https://doi.org/10.3389/fmicb.2014.00643

    Article  PubMed  PubMed Central  Google Scholar 

  9. Falagas ME, Kasiakou SK, Saravolatz LD (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40:1333–1341. https://doi.org/10.1086/429323

    Article  CAS  PubMed  Google Scholar 

  10. Yu Y, Fei A, Wu Z et al (2017) Intravenous polymyxins: revival with puzzle. Biosci Trends 11:370–382. https://doi.org/10.5582/bst.2017.01188

    Article  CAS  PubMed  Google Scholar 

  11. Lima WG, Alves MC, Cruz WS, Paiva MC (2018) Chromosomally encoded and plasmid-mediated polymyxins resistance in Acinetobacter baumannii: a huge public health threat. Eur J Clin Microbiol Infect Dis 37:1009–1019. https://doi.org/10.1007/s10096-018-3223-9

    Article  CAS  PubMed  Google Scholar 

  12. Adams MD, Nickel GC, Bajaksouzian S et al (2009) Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother 53:3628–3634. https://doi.org/10.1128/AAC.00284-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moffatt JH, Harper M, Harrison P et al (2010) Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 54:4971–4977. https://doi.org/10.1128/AAC.00834-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hood MI, Becker KW, Roux CM et al (2013) Genetic determinants of intrinsic colistin tolerance in Acinetobacter baumannii. Infect Immun 81:542–551. https://doi.org/10.1128/IAI.00704-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bojkovic J, Richie DL, Six DA et al (2016) Characterization of an Acinetobacter baumannii lptD deletion strain: permeability defects and response to inhibition of lipopolysaccharide and fatty acid biosynthesis. J Bacteriol 198:731–741. https://doi.org/10.1128/JB.00639-15

    Article  CAS  PubMed Central  Google Scholar 

  16. Nhu NTK, Riordan DW, Nhu TDH et al (2016) The induction and identification of novel Colistin resistance mutations in Acinetobacter baumannii and their implications. Sci Rep 6:28291. https://doi.org/10.1038/srep28291

    Article  CAS  Google Scholar 

  17. Potron A, Vuillemenot J-B, Puja H et al (2019) ISAba1-dependent overexpression of eptA in clinical strains of Acinetobacter baumannii resistant to colistin. J Antimicrob Chemother 74:2544–2550. https://doi.org/10.1093/jac/dkz241

    Article  CAS  PubMed  Google Scholar 

  18. Higgins JPT, Green S (eds) (2011) Cochrane handbook for systematic reviews of interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration. Available from www.handbook.cochrane.org

  19. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. https://doi.org/10.1136/bmj.b2700

    Article  PubMed  PubMed Central  Google Scholar 

  20. Eriksen MB, Frandsen TF (2018) The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: a systematic review. J Med Libr Assoc 106:420–431. https://doi.org/10.5195/jmla.2018.345

    Article  PubMed  PubMed Central  Google Scholar 

  21. Landis R, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  Google Scholar 

  22. Vaez H, Sahebkar A, Khademi F (2019) Carbapenem-resistant Klebsiella Pneumoniae in Iran: a systematic review and meta-analysis. J Chemother 31:1–8. https://doi.org/10.1080/1120009X.2018.1533266

    Article  PubMed  Google Scholar 

  23. Kaye KS, Pogue JM, Tran TB et al (2016) Agents of last resort: polymyxin resistance. Infect Dis Clin N Am 30:391–414. https://doi.org/10.1016/j.idc.2016.02.005

    Article  Google Scholar 

  24. Zilberberg MD, Kollef MH, Shorr AF, Zilberberg MD (2016) Secular trends in Acinetobacter baumannii resistance in respiratory and blood stream specimens in the United States, 2003 to 2012: a survey study. J Hosp Med 11:21–26. https://doi.org/10.1002/jhm.2477

    Article  PubMed  Google Scholar 

  25. Liu Y-Y, Wang Y, Walsh TR et al (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168. https://doi.org/10.1016/S1473-3099(15)00424-7

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Wang Y, Zhou Y et al (2018) Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect 7:122. https://doi.org/10.1038/s41426-018-0124-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun J, Zhang H, Liu Y-H, Feng Y (2018) Towards understanding MCR-like colistin resistance. Trends Microbiol 26:794–808. https://doi.org/10.1016/j.tim.2018.02.006

    Article  CAS  PubMed  Google Scholar 

  28. Kieffer N, Royer G, Decousser J-W et al (2019) mcr-9, an inducible gene encoding an acquired phosphoethanolamine transferase in Escherichia coli , and its origin. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00965-19

  29. Carroll LM, Gaballa A, Guldimann C et al (2019) Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible salmonella enterica serotype typhimurium isolate. MBio 10. https://doi.org/10.1128/mBio.00853-19

  30. Mendes Oliveira VR, Paiva MC, Lima WG (2019) Plasmid-mediated colistin resistance in Latin America and Caribbean: a systematic review. Travel Med Infect Dis 31. https://doi.org/10.1016/j.tmaid.2019.07.015

  31. Dafopoulou K, Vourli S, Tsakris A, Pournaras S (2019) An update on polymyxin susceptibility testing methods for Acinetobacter baumannii. Expert Rev Anti-Infect Ther 17:699–713. https://doi.org/10.1080/14787210.2019.1667230

    Article  CAS  PubMed  Google Scholar 

  32. (2016) EUCAST. Recommendations for colistin (polymyxin E) MIC testing-joint EUCAST and CLSI recommendation. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf. Accessed 17 Nov 2019

  33. Hejnar P, Kolár M, Hájek V (1999) Characteristics of Acinetobacter strains (phenotype classification, antibiotic susceptibility and production of beta-lactamases) isolated from haemocultures from patients at the teaching hospital in Olomouc. Acta Univ Palacki Olomuc Fac Med 142:73–77

    CAS  PubMed  Google Scholar 

  34. Li Z, Cao Y, Yi L et al (2019) Emergent polymyxin resistance: end of an era? Open Forum Infect Dis 6. https://doi.org/10.1093/ofid/ofz368

  35. Giamarellou H (2016) Epidemiology of infections caused by polymyxin-resistant pathogens. Int J Antimicrob Agents 48:614–621. https://doi.org/10.1016/j.ijantimicag.2016.09.025

    Article  CAS  PubMed  Google Scholar 

  36. Kempf I, Fleury MA, Drider D et al (2013) What do we know about resistance to colistin in Enterobacteriaceae in avian and pig production in Europe? Int J Antimicrob Agents 42:379–383. https://doi.org/10.1016/j.ijantimicag.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  37. Tenhagen B-A, Werner N, Käsbohrer A, Kreienbrock L (2018) Übertragungswege resistenter Bakterien zwischen Tieren und Menschen und deren Bedeutung – Antibiotikaresistenz im One-Health-Kontext. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 61:515–521. https://doi.org/10.1007/s00103-018-2717-z

    Article  Google Scholar 

  38. Catry B, Cavaleri M, Baptiste K et al (2015) Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health. Int J Antimicrob Agents 46:297–306. https://doi.org/10.1016/j.ijantimicag.2015.06.005

    Article  CAS  PubMed  Google Scholar 

  39. Wong MHY, Chan EWC, Chen S (2015) Evolution and dissemination of OqxAB-like efflux pumps, an emerging quinolone resistance determinant among members of Enterobacteriaceae. Antimicrob Agents Chemother 59:3290–3297. https://doi.org/10.1128/AAC.00310-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Raro OHF, Gallo SW, Ferreira CAS et al (2017) Carbapenem-resistant Acinetobacter baumannii contamination in an intensive care unit. Rev Soc Bras Med Trop 50:167–172. https://doi.org/10.1590/0037-8682-0329-2016

    Article  PubMed  Google Scholar 

  41. Dafopoulou K, Tsakris A, Pournaras S (2018) Changes in antimicrobial resistance of clinical isolates of Acinetobacter baumannii group isolated in Greece, 2010-2015. J Med Microbiol 67:496–498. https://doi.org/10.1099/jmm.0.000708

    Article  CAS  PubMed  Google Scholar 

  42. Reddy T, Chopra T, Marchaim D et al (2010) Trends in antimicrobial resistance of Acinetobacter baumannii isolates from a metropolitan Detroit health system. Antimicrob Agents Chemother 54:2235–2238. https://doi.org/10.1128/AAC.01665-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ko KS, Choi Y, Lee J-Y (2017) Old drug, new findings: colistin resistance and dependence of Acinetobacter baumannii. Precis Futur Med 1:159–167. https://doi.org/10.23838/pfm.2017.00184

    Article  Google Scholar 

  44. Kim UJ, Kim HK, An JH et al (2014) Update on the epidemiology, treatment, and outcomes of carbapenem-resistant Acinetobacter infections. Chonnam Med J 50:37–44. https://doi.org/10.4068/cmj.2014.50.2.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. (ECDC) EC for DP and C (2014) Antimicrobial resistance surveillance in Europe 2013. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net), EARS-Net 2. Stockholm, Sweden

  46. Gales AC, Jones RN, Sader HS (2011) Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006-09). J Antimicrob Chemother 66:2070–2074. https://doi.org/10.1093/jac/dkr239

    Article  CAS  PubMed  Google Scholar 

  47. Ko KS, Suh JY, Kwon KT et al (2007) High rates of resistance to colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea. J Antimicrob Chemother 60:1163–1167. https://doi.org/10.1093/jac/dkm305

    Article  CAS  PubMed  Google Scholar 

  48. Mahmoudi S, Mahzari M, Banar M et al (2017) Antimicrobial resistance patterns of Gram-negative bacteria isolated from bloodstream infections in an Iranian referral paediatric hospital: a 5.5-year study. J Glob Antimicrob Resist 11:17–22. https://doi.org/10.1016/j.jgar.2017.04.013

    Article  PubMed  Google Scholar 

  49. Strateva T, Sirakov I, Stoeva T et al (2019) Carbapenem-resistant Acinetobacter baumannii: current status of the problem in four Bulgarian university hospitals (2014–2016). J Glob Antimicrob Resist 16:266–273. https://doi.org/10.1016/j.jgar.2018.10.027

    Article  PubMed  Google Scholar 

  50. (ECDC) EC for DP and C (2014) ECDC surveillance report: surveillance of antimicrobial consumption in Europe 2012. In: Stockholm. http://www.ecdc.europa.eu/. Accessed 16 Nov 2019

  51. Loureiro RJ, Roque F, Teixeira Rodrigues A et al (2016) O uso de antibióticos e as resistências bacterianas: breves notas sobre a sua evolução. Rev Port Saúde Pública 34:77–84. https://doi.org/10.1016/J.RPSP.2015.11.003

    Article  Google Scholar 

  52. Wirtz VJ, Dreser A, Gonzales R (2010) Trends in antibiotic utilization in eight Latin American countries, 1997-2007. Rev Panam Salud Publica 27:219–225

    Article  Google Scholar 

  53. Van Boeckel TP, Brower C, Gilbert M et al (2015) Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A 112:5649–5654. https://doi.org/10.1073/pnas.1503141112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kakkar M, Chatterjee P, Chauhan AS et al (2018) Antimicrobial resistance in South East Asia: time to ask the right questions. Glob Health Action 11:1483637. https://doi.org/10.1080/16549716.2018.1483637

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu Y, Liu J-H (2018) Monitoring colistin resistance in food animals, an urgent threat. Expert Rev Anti-Infect Ther 16:443–446. https://doi.org/10.1080/14787210.2018.1481749

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank UFSJ/PPGCF, UFMG/Pharmacy school-PPGCF, and UFMG/Department of Chemistry-PPGITB for the availability of bibliographic support. W.G.L. is grateful to Coordenação de Aperfeiçoamento de Pessoal do Nível Superior (CAPES) for a Ph.D. fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the development, analysis, and drafting of this article.

Corresponding author

Correspondence to William Gustavo Lima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, W.G., Brito, J.C.M., Cardoso, B.G. et al. Rate of polymyxin resistance among Acinetobacter baumannii recovered from hospitalized patients: a systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis 39, 1427–1438 (2020). https://doi.org/10.1007/s10096-020-03876-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-020-03876-x

Keywords

Navigation