Skip to main content

Advertisement

Log in

The art of growing old: environmental manipulation, physiological rhythms, and the advent of Microcebus murinus as a primate model of aging

  • Original Paper
  • Published:
History and Philosophy of the Life Sciences Aims and scope Submit manuscript

Abstract

In the early 1990s, Microcebus murinus, a small primate endemic to Madagascar, emerged as a potential animal model for the study of aging and Alzheimer’s disease. This paper traces the use of the lesser mouse lemur in research on aging and associated neurodegenerative diseases, focusing on a basic material precondition that made this possible, namely, the conversion of a wild animal into an experimental organism that lives, breeds, and survives in the laboratory. It argues that the “old” mouse lemur model can be considered as an eco-zootechnical acquisition. This is shown by examining how, since the early 1970s, French mouse lemur researchers have articulated colony productivity and viability with the influence of environmental factors on the demographics and physiology of the species. The appearance and maintenance of a growing number of old mouse lemurs in French research facilities are related to three developments: the application of the ecological notion of “social stress” to the understanding and management of the behavior of the captive population; the experimental demonstration that a variety of seasonal physiological changes in the species were influenced by the photoperiod; and the related attempt to accelerate aging in mouse lemurs through the manipulation of annual light conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The term eco-zootechnology is also used by sociologist André Micoud to describe wildlife management practices that are developed at the intersection of “popular” know-how, such as “falconry” or “the arts of ‘trapping’ and hunting”, and learned knowledge (Micoud 1993, p. 209).

  2. The “thèse d’Etat” was a substantial doctoral dissertation conducted over a period of circa ten years.

  3. Demographic records from the Brunoy colony, if preserved and accessible, would make it possible to link the researchers' assessment to a detailed quantitative examination of the improvement of natality and life expectancy from the late 1970s onwards.

References

  • Abdel Rassoul, R., Alves, S., Pantesco, V., De Vos, J., Michel, B., et al. (2010). Distinct transcriptome expression of the temporal cortex of the primate Microcebus murinus during brain aging versus alzheimer's disease-like pathology. PLoS ONE,5, 9. https://doi.org/10.1371/journal.pone.0012770.

    Article  Google Scholar 

  • Ankeny, R. A. (2010). Historiographic reflections on model organisms: Or how the mureaucracy may be limiting our understanding of contemporary genetics and genomics. History and Philosophy of the Life Sciences,32(1), 91–104.

    Google Scholar 

  • Ankeny, R. A., & Leonelli, S. (2011). What’s so special about model organisms? Studies in History and Philosophy of Science Part A,42(2), 313–323.

    Article  Google Scholar 

  • Ankeny, R. A., & Leonelli, S. (2018). Organisms in experimental research. In M. Dietrich, M. Borrello, & O. Harman (Eds.), Handbook of the historiography of biology (pp. 1–25). Springer International Publishing. https://doi.org/10.1007/978-3-319-74456-8_15-1.

  • Ankeny, R. A., Leonelli, S., Nelson, N. C., & Ramsden, E. (2014). Making organisms model human behavior: Situated models in North-American alcohol research, since 1950. Science in Context,27(3), 485–509.

    Article  Google Scholar 

  • Aujard, F. (1998). Evolution en fonction de l’âge des rythmes biologiques du mâle microcèbe (Ph.D Dissertation). University of Paris XIII.

  • Austad, S. N. (1997). Small nonhuman Primates as potential models of human aging. ILAR Journal,38(3), 142–147.

    Article  Google Scholar 

  • Baker, J. R. (1939). Increasing winter egg-production in Spain more than a hundred years ago. Nature,143(3620), 477.

    Article  Google Scholar 

  • Baker, J. R., & Ranson, M. (1932). Factors affecting the breeding of the field mouse (Microtus agrestis). Part I—Light. Proceedings of the Royal Society London B.,110(767), 313–322.

    Article  Google Scholar 

  • Baker, J. R., & Ranson, M. (1938). The breeding seasons of southern hemisphere birds in the northern hemisphere. Proceedings of the Zoological Society of London,A108(1), 101–141.

    Article  Google Scholar 

  • Beck, S. D. (1963). Animal photoperiodism—relationship of daylength to animal growth, developemnt, and behavior. New York: Holt, Rinehart and Winston Inc.

    Google Scholar 

  • Benoit, J., & Assemacher, I. (1970). La photorégulation de la reproduction chez les oiseaux et les mammifères, Montpellier 17–22 juillet 1967. Paris: Editions du CNRS.

    Google Scholar 

  • Benoit, J., & Ott, L. (1944). External and internal factors in sexual activity: Effect of irradiation with different wave-lengths on the mechanisms of photostimulation of the hypophysis and on testicular growth in the immature duck. The Yale Journal of Biology and Medicine,17(1), 27–46.

    Google Scholar 

  • Binet, L., & Bourlière, F. (1955). Précis de gérontologie. Paris: Masson.

    Google Scholar 

  • Bissonnette, T. H. (1932). Modification of mammalian sexual cycles; reactions of ferrets (Putorius vulgaris) of both sexes to electric light added after dark in November and December. Proceedings of the Royal Society London B.,110, 322–336.

    Article  Google Scholar 

  • Bissonnette, T. H. (1935). Light and sexual cycles in starling and ferrets. The Quarterly Review of Biology,8(2), 201–208.

    Article  Google Scholar 

  • Bissonnette, T. H. (1941). Experimental modification of breeding cycles in goats. Physiological and Biochemical Zoology,14, 3.

    Google Scholar 

  • Bons, N., & Mestre, N. (1993). Similitudes entre les plaques amyloïdes cérébrales d’un lémurien âgé et de l’homme atteint de maladie d’Alzheimer. Comptes rendus des séances de la Société de biologie et de ses filiales,187(4), 516–525.

    Google Scholar 

  • Bons, N., Mestre, N., & Petter, A. (1991). Présence de plaques neuritiques et de modifications neurofibrillaires dans le cortex cérébral d’un primate lémurien âgé. Comptes-Rendus de l’Académie de Médecine, Série III, Sciences de La Vie,313(5), 213–219.

    Google Scholar 

  • Bourlière, F. (1959). Titres et travaux scientifiques du Dr. François Bourlière. Supplément 1955–1959. Paris, Villeneuve-Saint-Georges: Impr. L’Union typographique.

  • Bourlière, F. (1963). Les méthodes de mesure de l’âge biologique chez l’homme. Bulletins et Mémoires de La Société d’anthropologie de Paris,4(4), 561–583.

    Article  Google Scholar 

  • Bourlière, F. (1969). Progrès en gérontologie. Paris: Éditions médicales Flammarion.

    Google Scholar 

  • Bourlière, F. (1979). Histoire de la gérontologie. In J. Poulet, J.-C. Sournia, & M. Martiny (Eds.), Histoire de la médecine, de la pharmacie, de l’art dentaire et de l’art vétérinaire (Vol. VI, pp. 83–109). Paris: Albin Michel, Laffont, Tchou.

    Google Scholar 

  • Bourlière, F., & Petter-Rousseaux, A. (1966). Existence probable d’un rythme métabolique saisonnier chez les cheirogaleinae (Lemuroidea). Folia Primatologica, 4(4), 249–256.

    Article  Google Scholar 

  • Bourlière, F., Petter-Rousseaux, A., & Petter, J.-J. (1962). Regular breeding in captivity of the lesser mouse lemur (Microcebus murinus). International Zoo Yearbook,3, 24–25.

    Article  Google Scholar 

  • Buettner-Janusch, J., Tattersall, I., & Sussman, R. W. (1975). History of study of the malagasy lemurs, with notes on major museum collections. In I. Tattersall & R. W. Sussman (Eds.), Lemur biology (pp. 3–11). New York and London: Plenum Press.

    Chapter  Google Scholar 

  • Christian, J. J. (1950). The adreno-pituitary system and population cycles in mammals. Journal of Mammalogy,31(3), 247–259.

    Article  Google Scholar 

  • Christian, J. J. (1961). Phenomena associated with population density. Proceedings of the National Academy of Sciences,47(4), 428–449.

    Article  Google Scholar 

  • Christian, J. J., & Davis, D. E. (1964). Endocrines, behavior, and population: Social and endocrine factors are integrated in the regulation of growth of mammalian populations. Science,146(3651), 1550–1560.

    Article  Google Scholar 

  • Curtis, G. M. (1920). Use of artificial light to increase winter egg production. Quincy, Illinois: Reliable Poultry Journal Publishing Company.

    Google Scholar 

  • Davies, G. (2012). What is a humanized mouse? Remaking the species and spaces of translational medicine. Body & Society,18(3–4), 126–155.

    Article  Google Scholar 

  • Comte de Buffon, Louis-Leclerc, G. (1828–1830). Œuvres complètes de Buffon, suivies de ses continuateurs Daubenton, Lacépède, Cuvier, Duméril, Poiret, Lesson et Geoffroy St-Hilaire. Bruxelles: Th. Lejeune, Libraire-Éditeur.

  • Dror, O. Y. (1999). The scientific image of emotion: Experience and technologies of inscription. Configurations,7(3), 355–401.

    Article  Google Scholar 

  • Feller, E. (2005). Histoire de la vieillesse en France. 1900–1960. Paris: Seli Arslan.

    Google Scholar 

  • Fleming, J. R., & Janković, V. (2011). Introduction: Revisiting Klima. Osiris,26, 1–15.

    Article  Google Scholar 

  • Garner, W. W., & Allard, H. A. (1920). Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Journal of Agricultural Research,18, 553–606.

    Google Scholar 

  • Gary, C., Lam, S., Hérard, A., et al. (2019). Encephalopathy induced by Alzheimer brain inoculation in a non-human primate. Acta Neuropathologica Communications,7, 126. https://doi.org/10.1186/s40478-019-0771-x.

    Article  Google Scholar 

  • Gaudillière, J.-P. (2004). Mapping as technology: Genes, mutant mice, and biomedical research (1910–65). In H.-J. Rheinberger & J.-P. Gaudillière (Eds.), Classical genetic research and its legacy. The mapping cultures of twentieth-century genetics (pp. 173–203). London: Routledge.

    Chapter  Google Scholar 

  • Geoffroy Saint-Hilaire, E. (1829). Cours de l’histoire naturelle des mammifères. Paris: Pichon et Didier Éditeurs.

    Google Scholar 

  • Guillemard, A.-M. (1983). Les politiques de la vieillesse. Communications,37, 105–123.

    Article  Google Scholar 

  • Haraway, D. (1989). The bio-politics of a multicultural field. Primate visions: Gender, race, and nature in the world of modern science (pp. 244–275). New York: Routledge.

    Google Scholar 

  • Harpet, C. (2011). Des lémuriens et des hommes: mythes, représentations et pratiques à Madagascar. Revue de Primatologie,2011, 3. https://doi.org/10.4000/primatologie.829.

    Article  Google Scholar 

  • Hertzfeld, C. (2012). Petite histoire des grands singes. Paris: Seuil.

    Google Scholar 

  • Jackson, M. P. (2014). Evaluating the role of Hans Selye in the modern history of stress. In D. Cantor & E. Ramsden (Eds.), Stress, shock, and adaptation in the twentieth century (pp. 21–47). Rochester: University of Rochester Press.

    Google Scholar 

  • Jones, S. D. (2017). Population cycles, disease, and networks of ecological knowledge. Journal of the History of Biology,50(2), 357–391.

    Article  Google Scholar 

  • Kirk, R. G. W. (2014). The invention of the “stressed animal” and the development of a science of animal welfare. In D. Cantor & E. Ramsden (Eds.), Stress, shock, and adaptation in the twentieth century (pp. 1947–1986). Rochester: University of Rochester Press.

    Chapter  Google Scholar 

  • Kirk, R. G. W., & Ramsden, E. (2018). Working across species down on the farm: Howard S. Liddell and the development of comparative psychopathology, c. 1923–1962. History and Philosophy of the Life Sciences,40, 1. https://doi.org/10.1007/s40656-018-0189-y.

    Article  Google Scholar 

  • Kohler, R. E. (1994). Lords of the fly: Drosophila genetics and the experimental life. Chicago: University of Chicago Press.

    Google Scholar 

  • Krebs, C. J. (1978). A review of the Chitty hypothesis of population regulation. Canadian Journal of Zoology,56(12), 2463–2480.

    Article  Google Scholar 

  • Krebs, C. J. (1996). Population cycles revisited. Journal of Mammalogy,77(1), 8–24.

    Article  Google Scholar 

  • Krebs, C. J. (2013). Population fluctuations in rodents. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Krebs, C. J., & Myers, J. H. (1974). Population cycles in small mammals. Advances in Ecological Research,8, 267–399.

    Article  Google Scholar 

  • Languille, S., Blanc, S., Blin, O., Canale, C. I., Dal-Pan, A., et al. (2012). The grey mouse lemur: A non-human primate model for ageing studies. Ageing Research Reviews,11(1), 150–162.

    Article  Google Scholar 

  • Lenoir, R. (1979). L’invention du ‘troisième âge’. Actes de la Recherche en Sciences Sociales,26–27, 57–82.

    Article  Google Scholar 

  • Lenoir, T. (2010). Epistemology historicized. Making Epistemic Things. In Rheinberger, H.-J., An Epistemology of the Concrete. Twentieth-Century Histories of Life (pp. xi-xix). Durham & London: Duke University Press.

  • Löwy, I., & Gaudillière, J.-P. (1998). Disciplining cancer: mice and the practice of genetic purity. In J.-P. Gaudillière & I. Löwy (Eds.), The Invisible industrialist: Manufactures and the production of scientific knowledge (pp. 209–249). London: Palgrave Macmillan.

    Chapter  Google Scholar 

  • Manley, G. H. (1965). Reproduction in lorisoid primates. Journal of Reproduction and Fertility,9, 390–391.

    Google Scholar 

  • Marshall, F. H. A. (1937). On the change over in the œstrus cycle in animals after transference across the equator, with further observations on the incidence of the breeding seasons and the factors controlling sexual periodicity. Proceedings of the Royal Society of London Series B Biological Sciences,122(829), 413–428.

    Article  Google Scholar 

  • Marshall, F. H. A. (1942). Exteroceptive factors in sexual periodicity. Biological Reviews,17(1), 68–89.

    Article  Google Scholar 

  • Mauléon, P., & Dauzier, P. (1965). Variations de durée de l’anœstrus de lactation chez les brebis de race Ile-de-France. Annales de Biologie Animale, Biochimie, Biophysique,5(1), 13–43.

    Article  Google Scholar 

  • Mauléon, P., & Rougeot, J. (1962). Régulation des saisons sexuelles chez des brebis de races différentes au moyen de divers rythmes lumineux. Annales de Biologie Animale, Biochimie, Biophysique,2(3), 209–222.

    Article  Google Scholar 

  • Micoud, A. (1993). Vers un nouvel animal sauvage: le sauvage “naturalisé vivant”? Natures Sciences Société,1(3), 202–210.

    Article  Google Scholar 

  • Moreira, T. (2015). Unsettling standards: The biological age controversy. The Sociological Quarterly,56(1), 18–39.

    Article  Google Scholar 

  • Moreira, T. (2016). De-standardising ageing? Shifting regimes of age measurement. Ageing and Society,36(7), 1407–1433.

    Article  Google Scholar 

  • Munns, D. P. D. (2017). Engineering the Environment: Phytotrons and the Quest for Climate Control in the Cold War. Pittsburgh: University of Pittsburgh Press.

    Book  Google Scholar 

  • Paillat, P. (1975). Bourlière F. —Les méthodes de mesure de l’âge biologique chez l’homme. Population, 30e année(1), 183.

  • Park, H. W. (2016). Old Age, New Science: Gerontologists and Their Biosocial Visions, 1900–1960. Pittsburgh: University of Pittsburgh Press.

    Book  Google Scholar 

  • Perret, M. (1980). Influence de la captivité et du groupement social sur la physiologie du Microcèbe (Microcebus murinus – Cheirogaleinae- Primates) (Ph.D Dissertation). University Paris-Sud Orsay.

  • Perret, M. (1997). Change in photoperiodic cycle affects life span in a prosimian primate (Microcebus murinus). Journal of Biological Rhythms,12(2), 136–145.

    Article  Google Scholar 

  • Perret, M., & Aujard, F. (2006). Vieillissement et rythmes biologiques chez les primates. Medical Sciences, 22(3), 279–283.

    Google Scholar 

  • Petter, J.-J. (1980). Titres et travaux scientifiques de Jean-Jacques Petter ([s. n.].). [S. l.].

  • Petter, J.-J., & Petter-Rousseaux, A. (1966). L’élevage des lémuriens malgaches et leur pathologie en captivité. In R. N. T.-W. Fiennes (Ed.), Some recent developments in comparative medicine (pp. 41–48). London: Academic Press.

    Google Scholar 

  • Petter, J.-J., Albignac, R., & Rumpler, Y. (1977). Faune de Madagascar. 44, Mammifères, Lémuriens (Primates Prosimiens). Paris: ORSTOM, CNRS.

    Google Scholar 

  • Petter-Rousseaux, A. (1962). Recherches sur la biologie de la reproduction des primates inférieurs. Mammalia,26(Supplement, 1), 1–88.

    Google Scholar 

  • Petter-Rousseaux, A. (1970). Observations sur l’influence de la photopériode sur l’activité sexuelle chez Microcebus murinus (Miller 1977) en captivité. Annales de Biologie Animale, Biochimie, Biophysique,10(2), 203–208.

    Article  Google Scholar 

  • Petter-Rousseaux, A. (1972). Application d’un système semestriel de variation de la photopériode chez Microcebus murinus (Miller, 1777). Annales de Biologie Animale, Biochimie, Biophysique,12(3), 367–375.

    Article  Google Scholar 

  • Petter-Rousseaux, A. (1975). Activité sexuelle de Microcebus murinus (Miller, 1777) soumis à des régimes photopériodiques expérimentaux. Annales de Biologie Animale, Biochimie, Biophysique,15(3), 503–508.

    Article  Google Scholar 

  • Petter-Rousseaux, A. (1979). Age of Microcebus murinus at the onset of testicular development: Preliminary observations on photoperiodic effect. Annales de Biologie Animale, Biochimie, Biophysique,19(6), 1801–1806.

    Article  Google Scholar 

  • Petter-Rousseaux, A. (1988). Photopériode et reproduction de Microcebus murinus. In L. Rakotovao, V. Barre, & J. Sayer (Eds.), L’équilibre des écosystèmes forestiers à Madagascar. Actes d’un séminaire international (pp. 72–77). Gland & Cambridge: IUCN.

  • Picq, J.-L. (2010). Émergence et développement d'un nouveau modèle animal du vieillissement cérébral, le microcèbe, (Mémoire présenté en vue de l’Habilitation à Diriger des Recherches, Université Paris VIII).

  • Picq, J. (2016). Relever le défi de la maladie d’Alzheimer : des animaux au secours des hommes. PSN,14(2), 39–52.

    Google Scholar 

  • Pifferi, F., Terrien, J., Marchal, J., et al. (2018). Caloric restriction increases lifespan but affects brain integrity in grey mouse lemur primates. Communications Biology,1, 30. https://doi.org/10.1038/s42003-018-0024-8.

    Article  Google Scholar 

  • Pittendrigh, C. S., & Minis, D. H. (1972). Circadian systems: Longevity as a function of circadian resonance in Drosophila melanogaster. Proceedings of the National Academy of Sciences,69(6), 1537–1539.

    Article  Google Scholar 

  • Rader, K. (2004). Making mice: Standardizing animals for american biomedical research, 1900–1955. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Ramsden, E. (2011a). From rodent utopia to urban hell: Population, pathology, and the crowded rats of NIMH. Isis,102(4), 659–688.

    Article  Google Scholar 

  • Ramsden, E. (2011b). Model organisms and model environments: A rodent laboratory in science, medicine and society. Medical History,55(3), 365–368.

    Article  Google Scholar 

  • Ramsden, E. (2012). Rats, stress and the built environment. History of the Human Sciences,25(5), 123–147.

    Article  Google Scholar 

  • Rheinberger, H. J. (1997). Toward a History of Epistemic Things: Synthesizing Proteins in Test Tubes. Stanford: Stanford University Press.

    Google Scholar 

  • Rowan, W. (1925). Relation of light to bird migration and developmental changes. Nature,115(2892), 494–495.

    Article  Google Scholar 

  • Rowan, W. (1927). Migration and reproductive rhythm in birds. Nature,119(2992), 351–352.

    Article  Google Scholar 

  • Schwassmann, H. O. (1980). Biological rhythms: Their adaptive significance. In M. A. Ali (Ed.), Environmental physiology of fishes (pp. 613–630). New York, London: Plenum Press.

    Chapter  Google Scholar 

  • Selye, H. (1936). A syndrome produced by diverse nocuous agents. Nature,138(3479), 32–32.

    Article  Google Scholar 

  • Selye, H. (1946). The general adaptation syndrome and the diseases of adaptation. The Journal of Clinical Endocrinology & Metabolism,6(2), 117–230.

    Article  Google Scholar 

  • Sykes, J. F., & Cole, C. L. (1944). Modification of mating season in sheep by light treatment. Quarterly Bulletin of the Michigan State University Agricultural Experiment Station,26, 250–252.

    Google Scholar 

  • Thomas, M. (2010). Entre laboratoire et terrain: Les recherches sur le comportement animal au début du XXe siècle. In F. Burgat (Ed.), Penser le comportement animal (pp. 281–303). Versailles: Editions Quæ.

    Chapter  Google Scholar 

  • Treas, J. (2009). Age in standards and standards for age: Institutionalizing chronological age as biographical necessity. In M. Lampland & S. L. Star (Eds.), How quantifying, classifying, and formalizing practices shape everyday life (pp. 65–87). Ithaca, New York: Cornell University Press.

    Google Scholar 

  • Vicedo, M. (2013). The nature and nurture of love: From imprinting to attachment in Cold War America. Chicago: University of Chicago Press.

    Book  Google Scholar 

Download references

Acknowledgements

I thank the members of the research unit Mécanismes Moléculaires dans les Démences Neurodégénératives for having welcomed me in their laboratory at the University of Montpellier 2. The observations I was able to make in their mouse lemur facility prompted my investigation into the history of the breeding and maintenance of the species in captivity. Early versions of this paper were presented at the seminar “Approaches and methods ST2S” of the Department for the history of life and health sciences of the University of Strasbourg (2018) and the meeting of the International Society for History, Philosophy, and Social Studies of Biology (Oslo, 2019). The organizers and audiences at both events provided many helpful comments and criticisms. My gratitude also goes to the French National Foundation on Alzheimer’s Disease and Related Disorders whose support made this study possible. Finally, I would like to thank the editors and two anonymous reviewers for their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Gerber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerber, L. The art of growing old: environmental manipulation, physiological rhythms, and the advent of Microcebus murinus as a primate model of aging. HPLS 42, 26 (2020). https://doi.org/10.1007/s40656-020-00321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40656-020-00321-2

Keywords

Navigation