Skip to main content

Advertisement

Log in

Maturation of glomerular filtration rate in neonates and infants: an overview

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Glomerular filtration rate (GFR) increases progressively throughout fetal life, matures rapidly after birth according to gestational and post-menstrual age, and reaches adult values by 1-year post-natal age. GFR is considered the best marker of kidney function, and in clinical practice, estimated GFR is useful to anticipate complications, establish prognosis, and facilitate treatment decisions. This review article summarizes the maturation of glomerular filtration and the factors and conditions that modulate and impair developing glomerular filtration, and discusses the techniques available to assess GFR in neonates and infants. We focused on simple, reliable, easily available, and cheap techniques to estimate GFR, which may provide valuable information on the renal aspects of the clinical care of this group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Saint-Faust M, Boubred F, Simeoni U (2014) Renal development and neonatal adaptation. Am J Perinatol 31(9):773–780. https://doi.org/10.1055/s-0033-1361831

    Article  CAS  PubMed  Google Scholar 

  2. Merlet-Bénichou C, Gilbert T, Vilar J, Moreau E, Freund N, Lelièvre-Pégorier M (1999) Nephron number: variability is the rule. Causes and consequences. Lab Investig 79:515–527

    PubMed  Google Scholar 

  3. Hughson M, Farris AB 3rd, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63(6):2113–2122. https://doi.org/10.1046/j.1523-1755.2003.00018

    Article  PubMed  Google Scholar 

  4. Yosypiv IV (2020) Renin-angiotensin system in mammalian kidney development. Pediatr Nephrol 18. https://doi.org/10.1007/s00467-020-04496-5

  5. Ebenezar KK, Wong AK, Smith FG (2012) Haemodynamic responses to angiotensin II in conscious lambs: role of nitric oxide and prostaglandins. Pflugers Arch 463(3):399–404. https://doi.org/10.1007/s00424-011-1065-8

    Article  CAS  PubMed  Google Scholar 

  6. Tóth-Heyn P, Drukker A, Guignard JP (2000) The stressed neonatal kidney: from pathophysiology to clinical management of neonatal vasomotor nephropathy. Pediatr Nephrol 14(3):227–239. https://doi.org/10.1007/s004670050048

    Article  PubMed  Google Scholar 

  7. Guignard JP, Gouyon JB, John EG (1991) Vasoactive factors in the immature kidney. Pediatr Nephrol 5(4):443–446. https://doi.org/10.1007/bf01453678

    Article  CAS  PubMed  Google Scholar 

  8. Shah P, Riphagen S, Beyene J, Perlman M (2004) Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 89:F152–F155. https://doi.org/10.1136/adc.2002.023093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bonsante F, Ramful D, Binquet C, Samperiz S, Daniel S, Gouyon JB, Iacobelli S (2019) Low renal oxygen saturation at near-infrared spectroscopy on the first day of life is associated with developing acute kidney injury in very preterm infants. Neonatology 115(3):198–204. https://doi.org/10.1159/000494462

    Article  CAS  PubMed  Google Scholar 

  10. Guignard JP, John EG (1986) Renal function in the tiny, premature infant. Clin Perinatol 13(2):377–401

    Article  CAS  Google Scholar 

  11. Bueva A, Guignard JP (1994) Renal function in preterm neonates. Pediatr Res 36:572–577. https://doi.org/10.1203/00006450-199411000-00005

    Article  CAS  PubMed  Google Scholar 

  12. Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, Chatelut E, Grubb A, Veal GJ, Keir MJ, Holford NH (2009) Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol 24(1):67–76. https://doi.org/10.1007/s00467-008-0997-5

    Article  PubMed  Google Scholar 

  13. Vampee M, Blennow M, Linné T, Herin P, Aperia A (1992) Renal function in very low birth weight infants: normal maturity reached during early childhood. J Pediatr 121:784–788. https://doi.org/10.1016/s0022-3476(05)81916-x

    Article  Google Scholar 

  14. Schwartz GJ, Furth SL (2007) Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol 22(11):1839–1948. https://doi.org/10.1007/s00467-006-0358-1

    Article  PubMed  Google Scholar 

  15. Guignard JP, Torrado A, Da Cunha O, Gautier E (1975) Glomerular filtration rate in the first three weeks of life. J Pediatr 87(2):268–272. https://doi.org/10.1016/s0022-3476(75)80600-7

    Article  CAS  PubMed  Google Scholar 

  16. Fawer CL, Torrado A, Guignard JP (1979) Maturation of renal function in full-term and premature neonates. Helv Paediatr Acta 34(1):11–21

    CAS  PubMed  Google Scholar 

  17. Filler G, Yasin A, Medeiros M (2014) Methods of assessing renal function. Pediatr Nephrol 29(2):183–192. https://doi.org/10.1007/s00467-013-2426-7

    Article  PubMed  Google Scholar 

  18. Feldman H, Guignard JP (1982) Plasma creatinine in the first month of life. Arch Dis Child 2:123–126. https://doi.org/10.1136/adc.57.2.123

    Article  Google Scholar 

  19. Miall LS, Henderson MJ, Turner AJ, Brownlee KG, Brocklebank JT, Newell SJ, Allgar VL (1999) Plasma creatinine rises dramatically in the first 48 hours of life in preterm infants. Pediatrics 104:e76. https://doi.org/10.1542/peds.104.6.e76

    Article  CAS  PubMed  Google Scholar 

  20. Gallini F, Maggio L, Romagnoli C, Marrocco G, Tortorolo G (2000) Progression of renal function in preterm neonates with gestational age ≤32 weeks. Pediatr Nephrol 15(1-2):119–124. https://doi.org/10.1007/s004670000356

    Article  CAS  PubMed  Google Scholar 

  21. Guignard JP, Drukker A (1999) Why do newborn infants have a high plasma creatinine? Pediatrics 4:e49. https://doi.org/10.1542/peds.103.4.e49

    Article  Google Scholar 

  22. van Goudoever JB, Carnielli V, Darmaun D, Sainz de Pipaon M, ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition (2018) ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids. Clin Nutr 37(6 Pt B):2315–2323. https://doi.org/10.1016/j.clnu.2018.06.945

    Article  PubMed  Google Scholar 

  23. Yang S, Lee BS, Park HW, Choi YS, Chung SH, Kim JH, Kim EA, Kim KS (2013) Effect of high vs standard early parenteral amino acid supplementation on the growth outcomes in very low birth weight infants. J Parenter Enter Nutr 37(3):327–334. https://doi.org/10.1177/0148607112456400

    Article  CAS  Google Scholar 

  24. Filler G, Guerrero-Kanan R, Alvarez-Elías AC (2016) Assessment of glomerular filtration rate in the neonate : is creatinine the best tool? Curr Opin Pediatr 28(2):173–179. https://doi.org/10.1097/MOP.0000000000000318

    Article  CAS  PubMed  Google Scholar 

  25. Armangil D, Yurdakök M, Canpolat FE, Korkmaz A, Yiğit S, Tekinalp G (2008) Determination of reference values for plasma cystatin C and comparison with creatinine in premature infants. Pediatr Nephrol 23(11):2081–2083. https://doi.org/10.1007/s00467-008-0867-1

    Article  PubMed  Google Scholar 

  26. Finney H, Newman DJ, Thakkar H, Fell JM, Price CP (2000) Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82(1):71–75. https://doi.org/10.1136/adc.82.1.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee JH, Hahn WH, Ahn J, Chang JY, Bae CW (2013) Serum cystatin C during 30 postnatal days is dependent on the postconceptional age in neonates. Pediatr Nephrol 28(7):1073–1078. https://doi.org/10.1007/s00467-013-2429-4

    Article  PubMed  Google Scholar 

  28. Treiber M, Pecovnik Balon B (2006) Gorenjak M (2006) Cystatin C versus creatinine as a marker of glomerular filtration rate in the newborn. Wien Klin Wochenschr 118(Suppl 2):66. https://doi.org/10.1007/s00508-006-0555-8

    Article  CAS  PubMed  Google Scholar 

  29. Filler G, Lopes L, Harrold J, Bariciak E (2014) β-trace protein may be a more suitable marker of neonatal renal function. Clin Nephrol 81(4):269–276. https://doi.org/10.5414/CN108089

    Article  CAS  PubMed  Google Scholar 

  30. Harmoinen A, Ylinen E, Ala-Houhala M, Janas M, Kaila M, Kouri T (2000) Reference intervals for cystatin C in pre- and full-term infants and children. Pediatr Nephrol 15(1-2):105–108. https://doi.org/10.1007/s004670000421

    Article  CAS  PubMed  Google Scholar 

  31. Koren G, James A, Perlman M (1985) A simple method for the estimation of glomerular filtration rate by gentamicin pharmacokinetics during routine drug monitoring in the newborn. Clin Pharmacol Ther 38(6):680–685. https://doi.org/10.1038/clpt.1985.245

    Article  CAS  PubMed  Google Scholar 

  32. De Cock RF, Allegaert K, Schreuder MF, Sherwin CM, de Hoog M, van den Anker JN, Danhof M, Knibbe CA (2012) Maturation of the glomerular filtration rate in neonates, as reflected by amikacin clearance. Clin Pharmacokinet 51(2):105–117. https://doi.org/10.2165/11595640-000000000-00000

    Article  PubMed  Google Scholar 

  33. Vieux R, Hascoet JM, Merdariu D, Fresson J, Guillemin F (2010) Glomerular filtration rate reference values in very preterm infants. Pediatrics 125(5):e1186–e1192. https://doi.org/10.1542/peds.2009-1426

    Article  PubMed  Google Scholar 

  34. Schwartz GJ, Feld LG, Langford DJ (1984) A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 104(6):849–854. https://doi.org/10.1016/s0022-3476(84)80479-5

    Article  CAS  PubMed  Google Scholar 

  35. Brion LP, Fleischman AR, McCarton C, Schwartz GJ (1986) A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: noninvasive assessment of body composition and growth. J Pediatr 109(4):698–707. https://doi.org/10.1016/s0022-3476(86)80245-1

    Article  CAS  Google Scholar 

  36. Haenggi MH, Pelet J, Guignard JP (1999) Estimation of glomerular filtration rate by the formula GFR = K x T/Pc. Arch Pediatr 6(2):165–172. https://doi.org/10.1016/s0929-693x(99)80204-8

    Article  CAS  PubMed  Google Scholar 

  37. Rosenberg SN, Verzo B, Engstrom JL, Kavanaugh K, Meier PP (1992) Reliability of length measurements for preterm infants. Neonatal Netw 11(2):23–27

    CAS  PubMed  Google Scholar 

  38. Treiber M, Pečovnik Balon B, Gorenjak M (2015) A new serum cystatin C formula for estimating glomerular filtration rate in newborns. Pediatr Nephrol 30(8):1297–1305. https://doi.org/10.1007/s00467-014-3029-7

    Article  PubMed  Google Scholar 

  39. Coulthard MG (1983) Comparison of methods of measuring renal function in preterm babies using inulin. J Pediatr 102(6):923–930. https://doi.org/10.1016/s0022-3476(83)80026-2

    Article  CAS  PubMed  Google Scholar 

  40. van der Heijden AJ, Grose WF, Ambagtsheer JJ, Provoost AP, Wolff ED, Sauer PJ (1988) Glomerular filtration rate in the preterm infant: the relation to gestational and postnatal age. Eur J Pediatr 148(1):24–28. https://doi.org/10.1007/bf00441807

    Article  PubMed  Google Scholar 

  41. Svenningsen NW (1975) Single injection polyfructosan clearance in normal and asphyxiated neonates. Acta Paediatr Scand 1975 64(1):87–95. https://doi.org/10.1111/j.1651-2227.1975.tb04383.x

    Article  CAS  Google Scholar 

  42. Fawer CL, Torrado A, Guignard JP (1979) Single injection clearance in the neonate. Biol Neonate 35(5-6):321–324. https://doi.org/10.1159/000241192

    Article  CAS  PubMed  Google Scholar 

  43. Wilhelm-Bals A, Combescure C, Chehade H, Daali Y, Parvex P (2020) Variables of interest to predict glomerular filtration rate in preterm newborns in the first days of life. Pediatr Nephrol 35(4):703–712. https://doi.org/10.1007/s00467-019-04257-z

    Article  PubMed  Google Scholar 

  44. Choker G, Gouyon JB (2004) Diagnosis of acute renal failure in very preterm infants. Biol Neonate 86(3):212–216. https://doi.org/10.1159/000079619

    Article  CAS  PubMed  Google Scholar 

  45. Iacobelli S, Bonsante F, Ferdinus C, Labenne M, Gouyon JB (2009) Factors affecting postnatal changes in serum creatinine in preterm infants with gestational age <32 weeks. J Perinatol 29(3):232–236. https://doi.org/10.1038/jp.2008.203

    Article  CAS  PubMed  Google Scholar 

  46. Chowdhary V, Vajpeyajula R, Jain M, Maqsood S, Raina R, Kumar D, Mhanna MJ (2018) Comparison of different definitions of acute kidney injury in extremely low birth weight infants. Clin Exp Nephrol 22(1):117–125. https://doi.org/10.1007/s10157-017-1430-9

    Article  PubMed  Google Scholar 

  47. Shardlow A, McIntyre NJ, Fraser SDS, Roderick P, Raftery J, Fluck RJ, McIntyre CW, Taal MW (2017) The clinical utility and cost impact of cystatin C measurement in the diagnosis and management of chronic kidney disease: a primary care cohort study. PLoS Med 14(10):e1002400. https://doi.org/10.1371/journal.pmed.1002400

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schreuder MF, Bueters RR, Allegaert K (2014) The interplay between drugs and the kidney in premature neonates. Pediatr Nephrol 29(11):2083–2091. https://doi.org/10.1007/s00467-013-2651-0

    Article  PubMed  Google Scholar 

  49. Zhao W, Biran V, Jacqz-Aigrain E (2013). Amikacin maturation model as a marker of renal maturation to predict glomerular filtration rate and vancomycin clearance in neonates. Clin Pharmacokinet 52(12):1127–1134. https://doi.org/10.1007/s40262-013-0101-6

  50. Crump C, Sundquist J, Winkleby MA, Sundquist K (2019) Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study. BMJ 365:l1346. https://doi.org/10.1136/bmj.l1346

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Francesco Bonsante for helpful discussion of the manuscript and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Iacobelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Answers:

1. b; 2. a; 3. e; 4. c

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iacobelli, S., Guignard, JP. Maturation of glomerular filtration rate in neonates and infants: an overview. Pediatr Nephrol 36, 1439–1446 (2021). https://doi.org/10.1007/s00467-020-04632-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04632-1

Keywords

Navigation