Skip to main content

Advertisement

Log in

Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Boron-doped hydroxyapatite/tricalcium phosphates (BHTs) were synthesized to study boron uptake and correlate structural alterations of incremental boron addition (0 to 10 mol%). BHTs with a Ca/P ratio of 1.6 were prepared by a wet precipitation/microwave reflux method, sieved (< 70 μm) and characterized. XRD and FTIR analyses revealed that boron slightly distorted apatite crystal, increased crystallinity (95.78 ± 2.08% for 5BHT) and crystallite size (103.39 ± 23.47 nm for 5BHT) and still, boron addition did not show any further detrimental effects. Total surface area (4.05 ± 0.82 m2/g for 10BHT) and mesoporosity (23.90 ± 7.92 μL/g for 10BHT) were expanded as boron content was increased. Moreover, boron addition made grains become smaller (0.21 ± 0.06 μm for 5BHT) and ordered while hardness (10.51 ± 0.86 GPa for 10BHT) increased. Boron incorporation enhanced bioactivity with significantly highest calcium phosphate deposition and protein adsorption (135.29 ± 29.58 μg on 10BHT). In return, boron favored highest alkaline phosphatase activity (4.80 ± 0.40 MALP/ngDNA.min), intracellular calcium (23.61 ± 0.68 g/gDNA), phosphate (31.84 ± 4.68 g/gDNA), and protein (23.70 ± 3.46 g/gDNA) storage in 5BHT without cytotoxicity (128 ± 18% viability compared to pure HT). Compared to literature, it can be pointed out that we successfully employed an optimal procedure for production of BHTs and incorporated significantly higher boron content in HT (5.23 mol%). Additionally, results tended to conclude that 5BHT samples (5 mol% boron in HT) demonstrated a very high potential to be used in composite bone tissue constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nguyen DT, Burg KJ (2015) Bone tissue engineering and regenerative medicine: targeting pathological fractures. J Biomed Mater Res A 103(1):420–429

    PubMed  Google Scholar 

  2. Tite T, Popa A-C, Balescu LM, Bogdan IM, Pasuk I, Ferreira JM, Stan G (2018) Cationic substitutions in hydroxyapatite: current status of the derived biofunctional effects and their in vitro interrogation methods. Materials. 11(11):2081

    PubMed Central  Google Scholar 

  3. Dorozhkin SV (2010) Calcium orthophosphates as bioceramics: state of the art. J Funct Biomater 1(1):22–107

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Evis Z, Webster T (2011) Nanosize hydroxyapatite: doping with various ions. Adv Appl Ceram 110(5):311–321

    CAS  Google Scholar 

  5. Hoornaert A, Maazouz Y, Pastorino D, Aparicio C, de Pinieux G, Fellah BH, Ginebra MP, Layrolle P (2019) Vertical bone regeneration with synthetic biomimetic calcium phosphate onto the calvaria of rats. Tissue Eng C Methods 25(1):1–11

    CAS  Google Scholar 

  6. Zhang BG, Myers DE, Wallace GG, Brandt M, Choong PF (2014) Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings. Int J Mol Sci 15(7):11878–11921

    PubMed  PubMed Central  Google Scholar 

  7. Renaudin G, Gomes S, Nedelec J-M (2017) First-row transition metal doping in calcium phosphate bioceramics: a detailed crystallographic study. Materials. 10(1):92

    PubMed Central  Google Scholar 

  8. Bohner M, Galea L, Doebelin N (2012) Calcium phosphate bone graft substitutes: failures and hopes. J Eur Ceram Soc 32(11):2663–2671

    CAS  Google Scholar 

  9. Bose S, Fielding G, Tarafder S, Bandyopadhyay A (2013) Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends in Biotechnology 31(10):594–605

  10. Hidouri M, Dorozhkin SV (2018) Structure and thermal stability of sodium and carbonate-co-substituted strontium hydroxyfluorapatites. New J Chem 42(11):8469–8477

    CAS  Google Scholar 

  11. Kulanthaivel S, Roy B, Agarwal T, Giri S, Pramanik K, Pal K, Ray SS, Maiti TK, Banerjee I (2016) Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application. Mater Sci Eng C 58:648–658

    CAS  Google Scholar 

  12. Wang Y, Yang X, Gu Z, Qin H, Li L, Liu J, Yu X (2016) In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold. Mater Sci Eng C 66:185–192

    CAS  Google Scholar 

  13. Gao J, Wang M, Shi C, Wang L, Wang D, Zhu Y (2016) Synthesis of trace element Si and Sr codoping hydroxyapatite with non-cytotoxicity and enhanced cell proliferation and differentiation. Biol Trace Elem Res 174(1):208–217

    CAS  PubMed  Google Scholar 

  14. Bernhardt A, Schamel M, Gbureck U, Gelinsky M (2017) Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements. PLOS ONE 12(8):e0182109

  15. Doğan A, Demirci S, Bayir Y, Halici Z, Karakus E, Aydin A, Cadirci E, Albayrak A, Demirci E, Karaman A, Ayan AK, Gundogdu C, Şahin F (2014) Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering. Mater Sci Eng C 44:246–253

    Google Scholar 

  16. Hakki SS, Dundar N, Kayis SA, Hakki EE, Hamurcu M, Kerimoglu U, Baspinar N, Basoglu A, Nielsen FH (2013) Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet. J Trace Elem Med Biol 27(2):148–153

    CAS  PubMed  Google Scholar 

  17. Hakki SS, Bozkurt BS, Hakki EE (2010) Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol 24(4):243–250

    CAS  PubMed  Google Scholar 

  18. Gümüşderelioğlu M, Tunçay EÖ, Kaynak G, Demirtaş TT, Aydın ST, Hakkı SS (2015) Encapsulated boron as an osteoinductive agent for bone scaffolds. J Trace Elem Med Biol 31:120–128

    PubMed  Google Scholar 

  19. Gorustovich AA, Nielsen FH (2019) Effects of nutritional deficiency of boron on the bones of the appendicular skeleton of mice. Biol Trace Elem Res 188(1):221–229

    CAS  PubMed  Google Scholar 

  20. Boyacioglu O, Orenay-Boyacioglu S, Yildirim H, Korkmaz M (2018) Boron intake, osteocalcin polymorphism and serum level in postmenopausal osteoporosis. J Trace Elem Med Biol 48:52–56

    CAS  PubMed  Google Scholar 

  21. Basu S, Basu B (2019) Doped biphasic calcium phosphate: synthesis and structure. J Asian Ceram Soc 7(3):265–283

    Google Scholar 

  22. Ajlan SA, Ashri NY, Aldahmash AM, Alnbaheen MS (2015) Osteogenic differentiation of dental pulp stem cells under the influence of three different materials. BMC Oral Health 15(1):132

    PubMed  PubMed Central  Google Scholar 

  23. Mori G, Brunetti G, Oranger A, Carbone C, Ballini A, Muzio LL, Colucci S, Mori C, Grassi FR, Grano M (2011) Dental pulp stem cells: osteogenic differentiation and gene expression. Ann N Y Acad Sci 1237(1):47–52

    CAS  PubMed  Google Scholar 

  24. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27(15):2907–2915

    CAS  PubMed  Google Scholar 

  25. Pazarçeviren AE, Evis Z, Keskin D, Tezcaner A (2019) Resorbable PCEC/gelatin-bismuth doped bioglass-graphene oxide bilayer membranes for guided bone regeneration. Biomedical Materials 14(3):035018

  26. Li Y, Liu C, Zhai H, Zhu G, Pan H, Xu X, Tang R (2014) Biomimetic graphene oxide–hydroxyapatite composites via in situ mineralization and hierarchical assembly. RSC Adv 4(48):25398–25403

    CAS  Google Scholar 

  27. Madupalli H, Pavan B, Tecklenburg MMJ (2017) Carbonate substitution in the mineral component of bone: discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. J Solid State Chem 255:27–35

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mansour SF, El-Dek SI, Ahmed MK (2017) Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci Rep 7:43202

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Barheine S, Hayakawa S, Jäger C, Shirosaki Y, Osaka A (2011) Effect of disordered structure of boron-containing calcium phosphates on their in vitro biodegradability. J Am Ceram Soc 94(8):2656–2662

    CAS  Google Scholar 

  30. Kolmas J, Velard F, Jaguszewska A, Lemaire F, Kerdjoudj H, Gangloff SC, Kaflak A (2017) Substitution of strontium and boron into hydroxyapatite crystals: effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells. Mater Sci Eng C Mater Biol Appl 79:638–646

    CAS  PubMed  Google Scholar 

  31. Reyes-Gasga J, Martínez-Piñeiro EL, Rodríguez-Álvarez G, Tiznado-Orozco GE, García-García R, Brès EF (2013) XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite. Mater Sci Eng C 33(8):4568–4574

    CAS  Google Scholar 

  32. Bollino F, Armenia E, Tranquillo E (2017) Zirconia/hydroxyapatite composites synthesized via Sol-Gel: Influence of hydroxyapatite content and heating on their biological properties. Materials, 10(7):757

  33. Albayrak O (2016) Structural and mechanical characterization of boron doped biphasic calcium phosphate produced by wet chemical method and subsequent thermal treatment. Mater Charact 113:82–89

    CAS  Google Scholar 

  34. Obayes HK, Wagiran H, Hussin R, Saeed MA (2016) Strontium ions concentration dependent modifications on structural and optical features of Li4Sr(BO3)(3) glass. J Mol Struct 1111:132–141

    CAS  Google Scholar 

  35. Narwal P, Dahiya MS, Yadav A, Hooda A, Agarwal A, Khasa S (2018) Improved white light emission in Dy3+ doped LiF-CaO-Bi2O3-B2O3 glasses. J Non-Cryst Solids 498:470–479

    CAS  Google Scholar 

  36. Uysal I, Severcan F, Tezcaner A, Evis Z (2014) Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite. Prog Nat Sci Mater Int 24(4):340–349

    CAS  Google Scholar 

  37. Poinern GEJ, Brundavanam RK, Le X, Fawcett D (2012) The mechanical properties of a porous ceramic derived from a 30 nm sized particle based powder of hydroxyapatite for potential hard tissue engineering applications. Am J Biomed Eng 2(6):278–286

    Google Scholar 

  38. Hasan MF, Wang J, Berndt CC (2013) Effect of power and stand-off distance on plasma sprayed hydroxyapatite coatings. Mater Manuf Process 28(12):1279–1285

    CAS  Google Scholar 

  39. Nie J, Zhou J, Huang X, Wang L, Liu G, Cheng J (2019) Effect of TiO2 doping on densification and mechanical properties of hydroxyapatite by microwave sintering. Ceram Int 45(11):13647–13655

    CAS  Google Scholar 

  40. Reger NC, Bhargava AK, Ratha I, Kundu B, Balla VK (2019) Structural and phase analysis of multi-ion doped hydroxyapatite for biomedical applications. Ceram Int 45(1):252–263

    CAS  Google Scholar 

  41. Itatani K, Tsuchiya K, Sakka Y, Davies IJ, Koda S (2011) Superplastic deformation of hydroxyapatite ceramics with B2O3 or Na2O addition fabricated by pulse current pressure sintering. J Eur Ceram Soc 31(14):2641–2648

    CAS  Google Scholar 

  42. Barheine S, Hayakawa S, Osaka A, Jaeger C (2009) Surface, interface, and bulk structure of borate containing apatitic biomaterials. Chem Mater 21(14):3102–3109

    CAS  Google Scholar 

  43. Wang A-J, Lu Y-P, Zhu R-F, Li S-T, Xiao G-Y, Zhao G-F, Xu WH (2008) Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres. J Biomed Mater Res A 87A(2):557–562

    CAS  Google Scholar 

  44. Wang X, Zhang Y, Lin C, Zhong W (2017) Sol-gel derived terbium-containing mesoporous bioactive glasses nanospheres: In vitro hydroxyapatite formation and drug delivery. Colloids Surf B: Biointerfaces 160:406–415

    CAS  PubMed  Google Scholar 

  45. Nga NK, Thuy Chau NT, Viet PH (2018) Facile synthesis of hydroxyapatite nanoparticles mimicking biological apatite from eggshells for bone-tissue engineering. Colloids Surf B: Biointerfaces 172:769–778

    CAS  PubMed  Google Scholar 

  46. Zhu XD, Fan HS, Xiao YM, Li DX, Zhang HJ, Luxbacher T, Zhang XD (2009) Effect of surface structure on protein adsorption to biphasic calcium-phosphate ceramics in vitro and in vivo. Acta Biomater 5(4):1311–1318

    CAS  PubMed  Google Scholar 

  47. Tunçay EÖ, Demirtaş TT, Gümüşderelioğlu M (2017) Microwave-induced production of boron-doped HAp (B-HAp) and B-HAp coated composite scaffolds. J Trace Elem Med Biol 40:72–81

    PubMed  Google Scholar 

  48. Arslan A, Çakmak S, Gümüşderelioğlu M (2018) Enhanced osteogenic activity with boron-doped nanohydroxyapatite-loaded poly(butylene adipate-co-terephthalate) fibrous 3D matrix. Artif Cells Nanomed Biotechnol 46(sup2):790–799

    CAS  PubMed  Google Scholar 

  49. Burguera M, Burguera JL, Rondón C, Carrero P (2001) Determination of boron in blood, urine and bone by electrothermal atomic absorption spectrometry using zirconium and citric acid as modifiers. Spectrochim Acta B At Spectrosc 56(10):1845–1857

    Google Scholar 

  50. Tavassoli H, Javadpour J, Taheri M, Mehrjou M, Koushki N, Arianpour F, Majidi M, Izadi-Mobarakeh J, Negahdari B, Chan P, Ebrahimi Warkiani M, Bonakdar S (2018) Incorporation of nanoalumina improves mechanical properties and osteogenesis of hydroxyapatite bioceramics. ACS Biomater Sci Eng 4(4):1324–1336

    CAS  PubMed  Google Scholar 

  51. Langenbach F, Handschel J (2013) Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 4(5):117

    PubMed  PubMed Central  Google Scholar 

  52. Monterubbianesi R, Bencun M, Pagella P, Woloszyk A, Orsini G, Mitsiadis TA (2019) A comparative in vitro study of the osteogenic and adipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts. Sci Rep 9(1):1761

    PubMed  PubMed Central  Google Scholar 

  53. Ojansivu M, Mishra A, Vanhatupa S, Juntunen M, Larionova A, Massera J, Miettinen S (2018) The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells. PLoS One 13(8):e0202740

    PubMed  PubMed Central  Google Scholar 

  54. Taşlı PN, Doğan A, Demirci S, Şahin F (2013) Boron enhances odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs) in vitro. Biol Trace Elem Res 153(1-3):419–427

    PubMed  Google Scholar 

  55. Movahedi Najafabadi B-A-H, Abnosi MH (2016) Boron induces early matrix mineralization via calcium deposition and elevation of alkaline phosphatase activity in differentiated rat bone marrow mesenchymal stem cells. Cell J 18(1):62–73

    PubMed  PubMed Central  Google Scholar 

  56. Davies OG, Cox SC, Azoidis I, McGuinness AJ, Cooke M, Heaney LM, Grover LM (2019) Osteoblast-derived vesicle protein content is temporally regulated during osteogenesis: implications for regenerative therapies. Front Bioeng Biotechnol 7(92)

  57. Becerra-Bayona S, Guiza-Arguello V, Qu X, Munoz-Pinto DJ, Hahn MS (2012) Influence of select extracellular matrix proteins on mesenchymal stem cell osteogenic commitment in three-dimensional contexts. Acta Biomater 8(12):4397–4404

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM (2012) Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cells Mater 23:13–27

    CAS  Google Scholar 

  59. Shih Y-RV, Hwang Y, Phadke A, Kang H, Hwang NS, Caro EJ, Nguyen S, Siu M, Theodorakis EA, Gianneschi NC, Vecchio KS, Chien S, Lee OK, Varghese S (2014) Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc Natl Acad Sci U S A 111(3):990–995

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors would also like to thank Milad Fathi-Achachelouei for donating DPSCs.

Funding

Authors would like to acknowledge National Institute of Boron (Ankara, Turkey) for providing financial support by Project No. 2018-31-07-25-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafer Evis.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazarçeviren, A.E., Tezcaner, A., Keskin, D. et al. Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering. Biol Trace Elem Res 199, 968–980 (2021). https://doi.org/10.1007/s12011-020-02230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02230-8

Keywords

Navigation