Skip to main content
Log in

Intestinal Microbiota Analyses of Litopenaeus vannamei During a Case of Atypical Massive Mortality in Northwestern Mexico

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This study investigated the intestinal microbial community structure of Litopenaeus vannamei at six different stages during shrimp farming. Our goal was to elucidate the bacterial profile and the changes in the relative abundance of taxa during an atypical massive mortality event in Sonora, Mexico. High-throughput sequencing of the 16S rRNA gene and denaturing gradient gel electrophoresis showed that Vibrionaceae was persistent with high relative abundances in the intestine from cultivated shrimp during all the studied stages. The massive mortality observed at day 63 could be related to an overabundance of different Operational Taxonomic Units (OTUs) of Vibrio, Shewanella and Clostridium. Principal coordinate analysis (PCoA) showed variations in microbial structure at different culture times. These findings suggest that OTUs of different taxa contributed to the community switch from healthy to diseased individuals, questioning the hypothesis that single bacterial species is the cause of disease outbreaks. This study provided data to improve the understanding of disease outbreaks during shrimp farming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thitamadee S, Prachumwat A, Srisala J, Jaroenlak P, Salachan PV, Sritunyalucksana K, Flegel TW, Itsathitphaisarn O (2016) Review of current disease threats for cultivated penaeid shrimp in Asia. Aquaculture 452:69–87

    Google Scholar 

  2. Xiong J, Dai W, Li C (2016) Advances, challenges, and directions in shrimp disease control: the guidelines from an ecological perspective. Appl Microbiol Biotechnol 100:6947–6954

    PubMed  CAS  Google Scholar 

  3. Xiong J, Zhu J, Dai W, Dong Ch, Qiu Q, Li Ch (2017) Integrating gut microbiota immaturity and disease-discriminatory taxa to diagnose the initiation and severity of shrimp disease. Environ Microbiol 19:1490–1501

    PubMed  Google Scholar 

  4. Gao S, Pan L, Huang F, Song M, Tian CH, Zhang M (2019) Metagenomic insights into the structure and function of intestinal microbiota of the farmed Pacific white shrimp (Litopenaeus vannamei). Aquaculture 499:109–118

    CAS  Google Scholar 

  5. Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Dorrestein PC, Knight R (2016) Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535:94–103

    PubMed  CAS  Google Scholar 

  6. Zeng S, Huang Z, Hou D, Liu J, Weng S, He J (2017) Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages. PeerJ 5:e3986

    PubMed  PubMed Central  Google Scholar 

  7. Xiong J, Zhu J, Zhang D (2014) The application of bacterial indicator phylotypes to predict shrimp health status. Appl Microbiol Biotechnol 98:8291–8299

    PubMed  CAS  Google Scholar 

  8. Xiong J, Dai W, Qiu Q, Zhu J, Yang W, Li Ch (2018) Response of host-bacterial colonization in shrimp to developmental stage, environment and disease. Mol Ecol 27:3686–3699

    PubMed  Google Scholar 

  9. Xiong J, Xuan L, Yu W, Zhu J, Qiu Q, Chen J (2019) Spatiotemporal successions of shrimp gut microbial colonization: high consistency despite distinct species pool. Environ Microbiol 21:1383–1394

    PubMed  CAS  Google Scholar 

  10. Rungrassamee W, Klanchui A, Chaiyapechara S, Maibunkaew S, Tangphatsornruang S, Jiravanichpaisal P, Karoonuthaisiri N (2013) Bacterial population in intestines of black tiger shrimp (Penaeus monodon) under different growth stages. PLoS ONE 8:e60802

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhang M, Sun Y, Chen K, Yu N, Zhou Z, Chen L, Du Z, Li E (2014) Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources. Aquaculture 434:449–455

    CAS  Google Scholar 

  12. Li CC, Chen JC (2009) The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under low and high pH stress. Fish Shellfish Immunol 25:701–709

    CAS  Google Scholar 

  13. Zhou J, Fang W, Yang X, Zhou S, Hu L, Li X, Qi X, Su H, Xie L (2012) A Nonluminescent and highly virulent Vibrio harveyi strain is associated with “bacterial white tail disease” of Litopenaeus vannamei shrimp. PLoS ONE 7:e299

    Google Scholar 

  14. Vandenberghe J, Verdonck L, Robles-Arozarena R, Rivera G, Bolland A, Balladares M, Gomez-Gil B, Calderon J, Sorgeloos P, Swings J (1999) Vibrios Associated with Litopenaeus vannamei larvae, postlarvae, broodstock, and hatchery probionts. Appl Environ Microbiol 65:2592–2597

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Saulnier D, Haffner P, Goarant C, Levya P, Ansquera D (2000) Experimental infection models for shrimp vibriosis studies: a review. Aquaculture 191:133–144

    Google Scholar 

  16. Morales-Covarrubias MS, Cuéllar-Anjel J, Varela-Mejías A, Elisondo-Ovares C (2018) Shrimp bacterial infections in Latin America: a review. In: Asian Fisheries Society (ed) AHPND Acute hepatopancreatic disease. FAO Asian Fisheries Science, Rome, pp 76–87

  17. Zhu J, Dai W, Qiu Q, Dong C, Zhang J, Xiong J (2016) Contrasting ecological processes and functional compositions between intestinal bacterial community in healthy and diseased shrimp. Microb Ecol 72:975–985

    PubMed  Google Scholar 

  18. Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci 99:3129–3134

    PubMed  CAS  Google Scholar 

  19. Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237–258

    PubMed  CAS  Google Scholar 

  20. Xiong J, Dai W, Zhu J, Liu K, Dong C, Qiu Q (2017) The underlying ecological processes of gut microbiota among cohabitating retarded, overgrown and normal shrimp. Microb Ecol 73:988–999

    PubMed  Google Scholar 

  21. Chaiyapechara S, Rungrassamee W, Suriyachay I, Kuncharin Y, Klanchui A, Karoonuthaisiri N, Jiravanichpaisal P (2012) Bacterial community associated with the intestinal tract of P. monodon in commercial farms. Microb Ecol 63:938–953

    PubMed  Google Scholar 

  22. Gainza O, Ramírez C, Salinas Ramos A, Romero J (2017) Intestinal microbiota of white shrimp Penaeus vannamei under intensive cultivation conditions in Ecuador. Microb Ecol 75:562–568

    PubMed  Google Scholar 

  23. CONAPESCA (2014) Anuario estadístico de acuacultura y pesca 2014. Comisión Nacional de Acuacultura y Pesca, SAGARPA. Mazatlán, México

  24. Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H, Hugenholtz P (2010) Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J 4:642–647

    PubMed  CAS  Google Scholar 

  25. García-Maldonado JQ, Escobar-Zepeda A, Raggi L, Bebout BM, Sanchez-Flores A, López-Cortés A (2018) Bacterial and archaeal profiling of hypersaline microbial mats and endovaporites, under natural conditions and methanogenic microcosm experiments. Extremophiles 18:903–916

    Google Scholar 

  26. Andrew DR, Fitak RR, Munguia-Vega A, Racolta A, Martinson VG, Dontsova K (2012) Abiotic factors shape microbial diversity in Sonora desert soils. Appl Environ Microbiol 78:7527–7537

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Gonzalez PA, Goodrich KJ, Gordon IJ, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high throughput community sequencing data. Nat Methods 7:335–3336

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW (2012) Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat Methods 9:425–426

    PubMed  CAS  Google Scholar 

  29. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    PubMed  CAS  Google Scholar 

  30. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    PubMed  CAS  Google Scholar 

  31. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, The Human Microbiome Consortium, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequencing PCR amplicons. Genome Res 21:494–504

    PubMed  Google Scholar 

  33. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41(D1):D590–D596

    CAS  Google Scholar 

  34. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  35. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of distance matrix. Mol Biol Evol 26:1641–1650

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara R B, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan

  37. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H (2014) UpSet: Visualization of Intersecting Sets. IEEE Trans Vis Comput Graph 20:1983–1992

    PubMed  PubMed Central  Google Scholar 

  38. Gómez-Gil B, Thompson CC, Matsumura Y, Sawabe T, Iida T, Christen R, Thompson F, Sawabe T (2014) The Family Vibrionaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer-Verlag, Berlin, Heidelberg, pp 659–747

    Google Scholar 

  39. Katoh S (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Stamatakis A (2014) RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 30:1312–1313

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Matsen FA, Kodner RB, Armbrust E (2010) pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform 11(538):1–16

    Google Scholar 

  42. Letunic I, Bork P (2019) Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47(W1):W256–259

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Dabadé DS, Wolkers-Rooijackers JCM, Azokpota P, Hounhouigan DJ, Zwietering MH, Nout MJR, den Besten HMW (2016) Bacterial concentration and diversity in fresh tropical shrimps (Penaeus notialis) and surrounding brackish waters and sediment. Int J Food Microbiol 218:96–104

    PubMed  Google Scholar 

  44. Porchas-Cornejo MA, Martínez-Porchas M, Vargas-Albores F, Gollas-Galvan T, Martínez-Córdova LR, Vazquez-Euan R, Peña-Messina E (2017) High-resolution detection of bacterial profile of ocean water, before and after being used by shrimp farms. Aquacult Int 25:1833–1843

    Google Scholar 

  45. Vargas-Albores F, Porchas-Cornejo MA, Martínez-Porchas M, Villalpando-Canchola E, Gollas-Galván T, Martínez-Córdova LR (2017) Bacterial biota of shrimp intestine is significantly modified by the use of a probiotic mixture: a high throughput sequencing approach. Helg Mar Res 71:1–10

    Google Scholar 

  46. Cornejo-Granados F, Lopez-Zavala AA, Gallardo-Becerra L, Mendoza-Vargas A, Sánchez F, Vichido R, Brieba LG, Viana MT, Sotelo-Mundo RR, Ochoa-Leyva A (2017) Microbiome of Pacific whiteleg shrimp reveals differential bacterial community composition between wild, aquacultured and AHPND/EMS outbreak conditions. Sci Rep 7:11783

    PubMed  PubMed Central  Google Scholar 

  47. Kriem MR, Banni B, El Bouchtaoui H, Hamama A, El Marrakchi A, Chaouqy N, Robert-Pillot A, Quilici ML (2015) Prevalence of Vibrio spp. in raw shrimps (Parapenaeus longirostris) and performance of a chromogenic medium for the isolation of Vibrio strains. Lett Appl Microbiol 61:224–230

    PubMed  CAS  Google Scholar 

  48. Kondo H, Tinwongger S, Proespraiwong P, Mavichak R, Unajak S, Nozaki R, Hirono I (2014) Draft genome sequences of six strains of Vibrio parahaemolyticus isolated from early mortality syndrome/acute hepatopancreatic necrosis disease shrimp in Thailand. Genome Announc 2:e00221–e1214

    PubMed  PubMed Central  Google Scholar 

  49. Garibay-Valdez E, Martínez-Porchas M, Calderón K, Vargas-Albores F, Gollas-Galván G, Martínez-Córdova L (2020) Taxonomic and functional changes in the microbiota of the white shrimp (Litopenaeus vannamei) associated with postlarval ontogenetic development. Aquaculture 518:734842

    CAS  Google Scholar 

  50. MacDonell MT, Colwell RR (1985) Phylogeny of the Vibrionaceae and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–182

    CAS  Google Scholar 

  51. Kita-Tsukamoto K, Oyaizu H, Namba K, Simidu U (1993) Phylogenetic relationships of marine bacteria, mainly members of the Family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int J Syst Bact 43:8–19

    CAS  Google Scholar 

  52. Cai J, Chen H, Thompson KD, Li C (2006) Isolation and identification of Shewanella algae and its pathogenic effects on post-larvae of abalone Haliotis diversicolor supertexta. J Fish Dis 29:505–508

    PubMed  CAS  Google Scholar 

  53. Chang Ch, Chaoqun H, Xiaoyan Ch, Luping Z (2003) Identification and characterization of Shewanella algae as a novel pathogen of ulcer disease of fish Scinenops ocellata. Oceano Limnol Sin 34:1–8

    Google Scholar 

  54. Md Zoqratt MZH, Han Eng WW, Thai BT, Austin ChM, Gang HM (2018) Microbiome analysis of Pacific white shrimp gut and rearing water from Malaysia and Vietnam: implications for aquaculture research and management. PeerJ 6:e5826

    PubMed  PubMed Central  Google Scholar 

  55. Giraffa G (2003) Functionality of enterococci in dairy products. Int J Food Microbiol 88:215–222

    PubMed  CAS  Google Scholar 

  56. Gerritsen J, Fuentes S, Grievink W, van Niftrik L, Tindall BJ, Timmerman HM, Rijkers GT, Smidt H (2014) Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. Int J Syst Evol Microbiol 64:1600–1616

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by Consejo Nacional de Ciencia y Tecnología, Grants 175268 (FINNOVA 2012–2014) and 178664 (PROINNOVA 2012–2013) to ALC.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author performed the study conception and design. Material preparation, data collection and analysis were performed by JQG-M, AM-V, MM and HL-B. The first draft of the manuscript was written by AL-C and all authors participated in drafting the sections of the manuscript and commented on previous versions.

Corresponding author

Correspondence to Alejandro López-Cortés.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

The specimens are aquaculture animals. The animals were handled under the best practices and for sampling, the principles of Replacement, Reduction and Refinement (3Rs) were applied.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Cortés, A., Latisnere-Barragán, H., García-Maldonado, J.Q. et al. Intestinal Microbiota Analyses of Litopenaeus vannamei During a Case of Atypical Massive Mortality in Northwestern Mexico. Curr Microbiol 77, 2312–2321 (2020). https://doi.org/10.1007/s00284-020-02079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02079-z

Navigation