Skip to main content
Log in

Probiotic Bacterium and Microalga Interaction on Rearing Kumamoto Oyster Crassostrea sikamea Spat

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This study assessed in vitro interaction between Bacillus bacteria and microalgae and their posterior in vivo effect on rearing Kumamoto oyster Crassostrea sikamea. The probiotic strains Bacillus licheniformis (MAt32), B. subtilis (MAt43) and B. subtilis (GAtB1) were individually inoculated in triplicate into 250 mL flasks containing 1 × 104 colony forming units (CFU) mL−1 of bacteria and 4.5 × 104 cell mL−1 of microalgae (Isochrysis galbana or Chaetoceros calcitrans) to evaluate their growth during a 7-day culture. Single cultures of microalgae or bacilli served as control. Additionally, C. sikamea spat was treated for 28 days with four single/combined bacillus treatments in triplicate at a concentration of 1 × 106 CFU mL−1 as follows: (a) control, without treatments; (b) combination of two antibiotics (10 mg L−1); (c) B. licheniformis; (d) B. subtilis; (e) B. subtilis subtilis and (f) mixed bacilli. The results showed a significantly (P < 0.05) increased growth of Bacillus strains co-cultured with microalgae, while the growth of I. galbana co-cultured with bacteria was not reduced significantly (P > 0.05) compared with the control group. C. sikamea spat treated with Bacillus showed significantly (P < 0.05) higher growth and survival than the control group. In this study, C. calcitrans microalgae were susceptible to the presence of probiotic bacteria. Nonetheless, this reduction in microalgal growth observed in vitro increased growth and survival of C. sikamea spat exposed to probiotic bacteria when compared to spat without probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Camara MD, Davis JP, Sekino M, Hedgecock D, Li G, Langdon CJ, Evans S (2008) The Kumamoto oyster Crassostrea sikamea is neither rare nor threatened by hybridization in the northern Ariake sea, Japan. J Shellfish Res 27:313–322

    Article  Google Scholar 

  2. Wang H, Qian L, Wang A, Guo X (2013) Occurrence and Distribution of Crassostrea sikamea (Amemiya 1928) in China. J Shellfish Res 32:439–446. https://doi.org/10.2983/035.032.0224

    Article  Google Scholar 

  3. Sekino M (2009) In search of the Kumamoto oyster Crassostrea sikamea (Amemiya, 1928) based on molecular markers: is the natural resource at stake? Fish Sci 75:819–831. https://doi.org/10.1007/s12562-009-0100-6

    Article  CAS  Google Scholar 

  4. Cáceres-Martínez J, Vásquez-Yeomans R, Guerrero-Rentería Y (2012) Early gametogenesis of Kumamoto oyster (Crassostrea sikamea). Hidrobiológica 22(2):181–184

    Google Scholar 

  5. Elston RA, Moore J, Abbott CL (2012) Denman Island disease (causative agent Mikrocytos mackini) in a new host, Kumamoto oysters Crassostrea sikamea. Dis Aquat Organ 102:65–71. https://doi.org/10.3354/dao02519

    Article  PubMed  CAS  Google Scholar 

  6. Cáceres-Martínez J, Vásquez-Yeomans R (2013) Enfermedades, parásitos y episodios de mortalidad de ostiones de importancia comercial en México y sus implicaciones para la producción. Cienc Pesq 21:5–48

    Google Scholar 

  7. Trabal-Fernández N, Mazón-Suástegui JM, Vázquez-Juárez R, Ascencio-valle F, Romero J (2014) Changes in the composition and diversity of the bacterial microbiota associated with oysters (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) during commercial production. FEMS Microbiol Ecol 88:69–83. https://doi.org/10.1111/1574-6941.12270

    Article  PubMed  CAS  Google Scholar 

  8. Sainz J, Maeda-Martínez A, Ascencio F (1998) Microb Ecol 35:188. https://doi.org/10.1007/s002489900073

    Article  PubMed  CAS  Google Scholar 

  9. Campa-Córdova AI, Luna-González A, Zarain-Herzberg M, Cáceres-Martínez JC (2005) Prophylactic use of antibiotics in larval culture of Argopecten ventricosus (Sowerby, 1835). J Shellfish Res 24(4):923–930. https://doi.org/10.2983/0730-8000

    Article  Google Scholar 

  10. Li N, Lin Q, Fu X, Guo H, Liu L, Wu S (2015) Development and efficacy of a novel streptomycin-resistant Flavobacterium johnsoniae vaccine in grass carp (Ctenopharyngodon idella). Aquaculture 448:93–97. https://doi.org/10.1016/j.aquaculture

    Article  CAS  Google Scholar 

  11. Holmström K, Gräslund S, Wahlströom A, Poungshompoo S, Bengtsson BE, Kautsky N (2003) Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int J Food Sci Technol 38:255–266. https://doi.org/10.1046/j.1365-2621.2003.00671.x

    Article  Google Scholar 

  12. Nwachi OF (2013) An overview of the importance of probiotics in aquaculture. J Fish Aquat Sci 8:30–32

    Article  Google Scholar 

  13. Navarrete P, Caruffo M (2015) Antibiotics in aquaculture: impacts and alternatives. APUA Newsl 33(2):4–7

    Google Scholar 

  14. Martínez-Córdova LR, Emerenciano M, Miranda-Baeza A, Martínez-Porchas M (2015) Microbial-based systems for aquaculture of fish and shrimp: An updated review. Rev Aquac 7:131–148. https://doi.org/10.1111/raq.12058

    Article  Google Scholar 

  15. Zhang Q, Tan B, Mai K, Zhang W, Ma H, Ai Q, Wang X, Liufu Z (2011) Dietary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquac Res 42:943–952. https://doi.org/10.1111/j.1365-2109.2010.02677.x

    Article  CAS  Google Scholar 

  16. Tuan TN, Duc PM, Hatai K (2013) Overview of the use of probiotics in aquaculture. Int J Res Fish Aquac 3(3):89–97

    Google Scholar 

  17. Abasolo-Pacheco F, Saucedo PE, Mazón-Suástegui JM, Tovar-Ramírez D, Araya R, Ramírez-Orozco JM, Campa-Córdova ÁI (2016) Isolation and use of beneficial microbiota from the digestive tract of lions-paw scallop Nodipecten subnodosus and winged pearl oyster Pteria sterna in oyster aquaculture. Aquac Res 47:3042–3051. https://doi.org/10.1111/are.12754

    Article  CAS  Google Scholar 

  18. Escamilla-Montes R, Luna-González A, Flores-Miranda MC, Álvarez-Ruiz P, Fierro-Coronado JA, Sanchez-Ortiz AC (2015) Isolation and characterization of potential probiotic bacteria suitable for mollusk larvae cultures. Thai J Veterenary Med 45(1):11–21

    Google Scholar 

  19. Prado S, Romalde JL, Barja JL (2010) Review of probiotics for use in bivalve hatcheries. Vet Microbiol 145:187–197. https://doi.org/10.1016/j.vetmic.2010.08.021

    Article  PubMed  Google Scholar 

  20. Gibson LF, Woodworth J, George AM (1998) Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii. Aquaculture 169:111–120

    Article  Google Scholar 

  21. Fuentes J, Garbayo I, Cuaresma M, Montero Z, González-del-Valle M, Vílchez C (2016) Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar Drugs 14:100. https://doi.org/10.3390/md14050100

    Article  PubMed Central  CAS  Google Scholar 

  22. Avendaño RE, Riquelme CE (1999) Establishment of mixed-culture probiotics and microalgae as food for bivalve larvae. Aquac Res 30:893–900

    Article  Google Scholar 

  23. Sánchez-Ortiz AC, Luna-González A, Campa-Córdova ÁI, Escamilla-Montes R, Flores-Miranda MC, Mazón-Suástegui JM (2015) Isolation and characterization of potential probiotic bacteria from pustulose ark (Anadara tuberculosa) suitable for shrimp farming. Lat Am J Aquat Res 43:123–136. https://doi.org/10.3856/vol43-issue1-fulltext-11

    Article  Google Scholar 

  24. Sánchez-Ortiz AC, Angulo C, Luna-González A, Álvarez-Ruiz P, Mazón-Suástegui JM, Campa-Córdova AI (2016) Effect of mixed–Bacillus spp. isolated from pustulose ark Anadara tuberculosa on growth, survival, viral prevalence, and immune-related gene expression in shrimp Litopenaeus vannamei. Fish Shellfish Immunol 59:95–102

    Article  CAS  Google Scholar 

  25. Guillard RRL (1973) Handbook of phycological methods. Cambridge ed Division rates London.

  26. Benbrook CM (2002) Antibiotic Drug Use in US Aquaculture. Northwest Science and Environmental Policy Center Sandpoint, Idaho. https://www.iatp.org/documents/antibiotic-drug-use-in-us-aquaculture-1.

  27. Campa-Córdova AI, González-Ocampo HA, Luna-González A, Mazón-Suástegui JM, Ascencio F (2009) Growth survival and superoxide dismutase activity in juvenile Crassostrea corteziensis (Hertlein, 1951) treated with probiotics. Hidrobiológica 19(2):151–157

    Google Scholar 

  28. Luis-Villaseñor IE, Campa-Córdova AI, Huerta-Aldaz N, Luna-González A, Mazón-Suástegui JM, Flores-Higuera F (2013) Effect of beneficial bacteria on larval culture of Pacific whiteleg shrimp. Litopenaeus vannamei Afr J Microbiol Res 7(27):3471–3478

    Google Scholar 

  29. Ziaei-Nejad S, Rezaei MH, Takami GA, Lovet DL, Mirvaghefi AR, Shakouri M (2006) The effect of Bacillus spp bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture 252(2–4):516–524. https://doi.org/10.1016/j.aquaculture.2005.07.021

    Article  CAS  Google Scholar 

  30. Hemaiswarya S, Raja R, Kumar R, Ganesan V, Anbazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27:1737–1746. https://doi.org/10.1007/s11274-010-0632-z

    Article  Google Scholar 

  31. Nicolas JL, Corre S, Gauthier G, Robert R, Ansquer D (1996) Bacterial problems associated with scallop (Pecten maximus) larval culture. Dis Aquat Org 27:67–76

    Article  Google Scholar 

  32. Aguilar-Macías OL, Ojeda-Ramírez JJ, Campa-Córdova AI, Saucedo PE (2010) Evaluation of natural and commercial probiotics for improving growth and survival of the pearl oyster, Pinctada mazatlanica, during late hatchery and early field culturing. J World Aquac Soc 41:447–454. https://doi.org/10.1111/j.1749-7345.2010.00386.x

    Article  Google Scholar 

  33. Campa-Córdova AI, Luna-González A, Ascencio F, Cortés-Jacinto E, Cáceres-Martínez CJ (2006) Effects of chloramphenicol, erythromycin, and furazolidone on growth of Isochrysis galbana and Chaetoceros gracilis. Aquaculture 260:145–150. https://doi.org/10.1016/J.Aquaculture.2006.06.014

    Article  Google Scholar 

  34. Grossart HP, Czub G, Simon M (2006) Algae–bacteria interactions and their effects on aggregation and organic matter flux in the sea. Enviromental Microbiol 8:1074–1084. https://doi.org/10.1111/j.1462-2920.2006.00999.x

    Article  Google Scholar 

  35. Grossart HP, Simon M (2007) Interactions of planktonic algae and bacteria: effects on algal growth and organic matter dynamics. Aquat Microb Ecol 47:163–176. https://doi.org/10.3354/ame047163

    Article  Google Scholar 

  36. Toi HT, Boeckx P, Sorgeloos P, Bossier P, Van Stappen G (2014) Co-feeding of microalgae and bacteria may result in increased N assimilation in Artemia as compared to mono-diets, as demonstrated by a 15N isotope uptake laboratory study. Aquaculture 422–423:109–114. https://doi.org/10.1016/j.aquaculture.2013.12.005

    Article  CAS  Google Scholar 

  37. De Paiva-Maia E, Alves-Modesto G, Otavio-Brito L, Olivera A, Vasconcelos-Gesteira TC (2013) Effect of a commercial probiotic on bacterial and phytoplankton concentration in intensive shrimp farming (Litopenaeus vannamei) recirculation systems. Lat Am J Aquat Res 41:126–137. https://doi.org/10.3856/vol41-issue1-fulltext-10

    Article  Google Scholar 

  38. Pacheco-Vega JM, Cadena-Roa MA, Leyva-Flores JA, Zavala-Leal OI, Pérez-Bravo E, Ruiz-Velazco JMJ (2018) Effect of isolated bacteria and microalgae on the biofloc characteristics in the Pacific white shrimp culture. Aquac Report. https://doi.org/10.1016/j.aqrep.2018.05.003

    Article  Google Scholar 

  39. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnol Adv 29:896–907. https://doi.org/10.1016/j.biotechadv.2011.07.009

    Article  PubMed  CAS  Google Scholar 

  40. Molina-Cárdenas CA, Sánchez-Saavedra MP (2017) Inhibitory effect of benthic diatom species on three aquaculture pathogenic vibrios. Algal Res 27:131–139. https://doi.org/10.1016/j.algal.2017.09.004

    Article  Google Scholar 

  41. Nemutanzhela ME, Roets Y, Gardiner N, Lalloo R (2014) The use and benefits of Bacillus based biological agents in aquaculture. In: Hernandez-Vergara M. (ed.) Sustainable aquaculture techniques. Murcia Spain.

  42. Timmerman H, Koning C, Mulder L, Rombouts F, Beynen A (2004) Monostrain, multistrain and multispecies probiotics—a comparison of functionality and efficacy. Int J Food Microbiol 96(3):219–233

    Article  CAS  Google Scholar 

  43. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214–220

    Article  Google Scholar 

  44. Luis-Villaseñor IE, Macías-Rodríguez ME, Gómez-Gil B, Ascencio-Valle F, Campa-Córdova ÁI (2011) Beneficial effects of four Bacillus strains on the larval cultivation of Litopenaeus vannamei. Aquaculture 321:136–144. https://doi.org/10.1016/j.aquaculture.2011.08.036

    Article  Google Scholar 

  45. Setyati WA, Martani E, Zainuddin M (2014) Selection, identification and optimization of the growth water probiotic consortium of mangrove ecosystems as bioremediation and biocontrol in shrimp ponds. JPHPI 17(3):243–253. https://doi.org/10.17844/jphpi.v17i3.8913

    Article  Google Scholar 

  46. Newaj-Fyzul A, Al-Harbi AH, Austin B (2014) Review : Developments in the use of probiotics for disease control in aquaculture. Aquaculture 431:1–11. https://doi.org/10.1016/j.aquaculture.2013.08.026

    Article  Google Scholar 

  47. Aly SM, Abdel-Galil Ahmed Y, Abdel-Aziz Ghareeb A, Mohamed MF (2008) Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 25:128–136. https://doi.org/10.1016/j.fsi.2008.03.013

    Article  PubMed  CAS  Google Scholar 

  48. Zokaeifar H, Balcázar JL, Saad CR, Kamarudin MS, Sijam K, Arshad A, Nejat N (2012) Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 33:683–689. https://doi.org/10.1016/j.fsi.2012.05.027

    Article  PubMed  CAS  Google Scholar 

  49. Dhama K, Tiwari R, Khan RU, Chakraborty S, Gopi M, Karthik K, Saminathan M, Desingu PA, Sunkara LT (2014) Growth promoters and novel feed additives improving poultry production and health, bioactive principles and beneficial applications: the trends and advances-A review. Int J Pharmacol 10:129–159

    Article  CAS  Google Scholar 

  50. Silva-Aciares F, Moraga D, Auffret M, Tanguy A, Riquelme C (2013) Transcriptomic and cellular response to bacterial challenge (pathogenic Vibrio parahaemolyticus) in farmed juvenile Haliotis rufescens fed with or without probiotic diet. J Invertebr Pathol 113:163–176. https://doi.org/10.1016/j.jip.2013.03.004

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CIBNOR staff Delfino Barajas-Frías and Pablo Ormart-Castro for hatchery-rearing of larvae and juveniles; Julian Garzón-Favela for provision of microalgae; Maria Del Carmen Rodriguez Jaramillo for technical support with the fluorescence microscope and Diana Fisher for editorial services. Acuacultura Robles S.P.R. of R.I. donated oyster specimens. Funding was provided by CIBNOR, SEP-CONACYT (243532) and PROINNOVA–CONACYT (199788) grants. First author was recipient of a doctoral fellowship from CONACYT (209357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel I. Campa-Córdova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Ortiz, A.C., Mazón-Suástegui, J.M., del C. Flores-Miranda, M. et al. Probiotic Bacterium and Microalga Interaction on Rearing Kumamoto Oyster Crassostrea sikamea Spat. Curr Microbiol 77, 2758–2765 (2020). https://doi.org/10.1007/s00284-020-02076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02076-2

Navigation