1887

Abstract

The AB cytotoxins are important virulence factors in . The most notable members of the AB toxin families include Shiga toxin families 1 (Stx) and 2 (Stx), which are associated with enterohaemorrhagic infections causing haemolytic uraemic syndrome and haemorrhagic colitis. The subAB toxins are the newest and least well understood members of the AB toxin gene family. The subtilase toxin genes are divided into a plasmid-based variant, , originally described in enterohaemorrhagic O113:H21, and distinct chromosomal variants, , that reside in pathogenicity islands encoding additional virulence effectors. Previously we identified a chromosomal operon within an ST58 strain IBS28 (ONT:H25) taken from a wild ibis nest at an inland wetland in New South Wales, Australia. Here we show the toxin operon comprised part of a 140 kb tRNA–Phe chromosomal island that co-hosted , encoding an outer-membrane protein that confers an adherence and invasion phenotype and additional virulence and accessory genetic content that potentially originated from known virulence island SE-PAI. This island shared a common evolutionary history with a secondary 90 kb tRNA–Phe pathogenicity island that was presumably generated via a duplication event. IBS28 is closely related [200 single-nucleotide polymorphisms (SNPs)] to four North American ST58 strains. The close relationship between North American isolates of ST58 and IBS28 was further supported by the identification of the only copy of a unique variant of IS26 within the O-antigen gene cluster. Strain ISB28 may be a historically important ST58 genome sequence hosting a progenitor pathogenicity island encoding .

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000387
2020-06-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/6/6/mgen000387.html?itemId=/content/journal/mgen/10.1099/mgen.0.000387&mimeType=html&fmt=ahah

References

  1. Zhi S, Banting G, Stothard P, Ashbolt NJ, Checkley S et al. Evidence for the evolution, clonal expansion and global dissemination of water treatment-resistant naturalized strains of Escherichia coli in wastewater. Water Res 2019; 156:208–222 [View Article][PubMed]
    [Google Scholar]
  2. Cummins ML, Hamidian M, Djordjevic SP. Salmonella Genomic Island 1 is Broadly Disseminated within Gammaproteobacteriaceae. Microorganisms 2020; 8:E161161 [View Article][PubMed]
    [Google Scholar]
  3. Johnson TJ, Jordan D, Kariyawasam S, Stell AL, Bell NP et al. Sequence analysis and characterization of a transferable hybrid plasmid encoding multidrug resistance and enabling zoonotic potential for extraintestinal Escherichia coli. Infect Immun 2010; 78:1931–1942 [View Article][PubMed]
    [Google Scholar]
  4. Brown Kav A, Rozov R, Bogumil D, Sørensen SJ, Hansen LH et al. Unravelling plasmidome distribution and interaction with its hosting microbiome. Environ Microbiol 2020; 22:32–44 [View Article][PubMed]
    [Google Scholar]
  5. Venturini C, Zingali T, Wyrsch ER, Bowring B, Iredell J et al. Diversity of P1 phage-like elements in multidrug resistant Escherichia coli. Sci Rep 2019; 9:18861 [View Article][PubMed]
    [Google Scholar]
  6. Tóth I, Nougayrède J-P, Dobrindt U, Ledger TN, Boury M et al. Cytolethal distending toxin type I and type IV genes are framed with lambdoid prophage genes in extraintestinal pathogenic Escherichia coli. Infect Immun 2009; 77:492–500 [View Article][PubMed]
    [Google Scholar]
  7. Brüssow H, Canchaya C, Hardt W-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004; 68:560–602 [View Article][PubMed]
    [Google Scholar]
  8. Nakamura K, Murase K, Sato MP, Toyoda A, Itoh T et al. Differential dynamics and impacts of prophages and plasmids on the pangenome and virulence factor repertoires of Shiga toxin-producing Escherichia coli O145:H28. Microb Genom 2020; 6: [View Article][PubMed]
    [Google Scholar]
  9. Yousuf FA, Rafiq S, Siddiqui R, Khan NA. The role of genomic islands in Escherichia coli K1 interactions with intestinal and kidney epithelial cells. Microb Pathog 2016; 93:145–151 [View Article][PubMed]
    [Google Scholar]
  10. Bai X, Zhang J, Ambikan A, Jernberg C, Ehricht R et al. Molecular characterization and comparative genomics of clinical hybrid Shiga toxin-producing and enterotoxigenic Escherichia coli (STEC/ETEC) strains in Sweden. Sci Rep 2019; 9:5619 [View Article][PubMed]
    [Google Scholar]
  11. Mariani-Kurkdjian P, Lemaître C, Bidet P, Perez D, Boggini L et al. Haemolytic-Uraemic syndrome with bacteraemia caused by a new hybrid Escherichia coli pathotype. New Microbes New Infect 2014; 2:127–131 [View Article][PubMed]
    [Google Scholar]
  12. Seif Y, Monk JM, Machado H, Kavvas E, Palsson BO. Systems Biology and Pangenome of Salmonella O-Antigens. mBio 2019; 10:e01247-19 [View Article][PubMed]
    [Google Scholar]
  13. Pang TY, Lercher MJ. Each of 3,323 metabolic innovations in the evolution of E. coli arose through the horizontal transfer of a single DNA segment. Proc Natl Acad Sci U S A 2019; 116:187–192 [View Article][PubMed]
    [Google Scholar]
  14. Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev 1998; 11:142–201 [View Article][PubMed]
    [Google Scholar]
  15. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol 2004; 2:123–140 [View Article][PubMed]
    [Google Scholar]
  16. Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 2010; 8:26–38 [View Article][PubMed]
    [Google Scholar]
  17. Fleckenstein J, Sheikh A, Qadri F. Novel antigens for enterotoxigenic Escherichia coli vaccines. Expert Rev Vaccines 2014; 13:631–639 [View Article][PubMed]
    [Google Scholar]
  18. Paton AW, Srimanote P, Talbot UM, Wang H, Paton JC. A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. J Exp Med 2004; 200:35–46 [View Article][PubMed]
    [Google Scholar]
  19. Paton AW, Beddoe T, Thorpe CM, Whisstock JC, Wilce MCJ et al. Ab5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature 2006; 443:548–552 [View Article][PubMed]
    [Google Scholar]
  20. Yahiro K, Morinaga N, Satoh M, Matsuura G, Tomonaga T et al. Identification and characterization of receptors for vacuolating activity of subtilase cytotoxin. Mol Microbiol 2006; 62:480–490 [View Article][PubMed]
    [Google Scholar]
  21. Byres E, Paton AW, Paton JC, Löfling JC, Smith DF et al. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature 2008; 456:648–652 [View Article][PubMed]
    [Google Scholar]
  22. Wang H, Paton JC, Paton AW. Pathologic changes in mice induced by subtilase cytotoxin, a potent new Escherichia coli AB5 toxin that targets the endoplasmic reticulum. J Infect Dis 2007; 196:1093–1101 [View Article][PubMed]
    [Google Scholar]
  23. Furukawa T, Yahiro K, Tsuji AB, Terasaki Y, Morinaga N et al. Fatal hemorrhage induced by subtilase cytotoxin from Shiga-toxigenic Escherichia coli. Microb Pathog 2011; 50:159–167 [View Article][PubMed]
    [Google Scholar]
  24. Seyahian EA, Oltra G, Ochoa F, Melendi S, Hermes R et al. Systemic effects of Subtilase cytotoxin produced by Escherichia coli O113:H21. Toxicon 2017; 127:49–55 [View Article][PubMed]
    [Google Scholar]
  25. Tozzoli R, Caprioli A, Cappannella S, Michelacci V, Marziano ML et al. Production of the subtilase AB5 cytotoxin by Shiga toxin-negative Escherichia coli. J Clin Microbiol 2010; 48:178–183 [View Article][PubMed]
    [Google Scholar]
  26. Sánchez S, Beristain X, Martínez R, García A, Martín C et al. Subtilase cytotoxin encoding genes are present in human, sheep and deer intimin-negative, Shiga toxin-producing Escherichia coli O128:H2. Vet Microbiol 2012; 159:531–535 [View Article][PubMed]
    [Google Scholar]
  27. Djordjevic SP, Hornitzky MA, Bailey G, Gill P, Vanselow B et al. Virulence properties and serotypes of Shiga toxin-producing Escherichia coli from healthy Australian slaughter-age sheep. J Clin Microbiol 2001; 39:2017–2021 [View Article][PubMed]
    [Google Scholar]
  28. Hornitzky MA, Vanselow BA, Walker K, Bettelheim KA, Corney B et al. Virulence properties and serotypes of Shiga toxin-producing Escherichia coli from healthy Australian cattle. Appl Environ Microbiol 2002; 68:6439–6445 [View Article][PubMed]
    [Google Scholar]
  29. Friedrich AW, Bielaszewska M, Zhang W-L, Pulz M, Kuczius T et al. Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J Infect Dis 2002; 185:74–84 [View Article][PubMed]
    [Google Scholar]
  30. Friedrich AW, Borell J, Bielaszewska M, Fruth A, Tschäpe H et al. Shiga toxin 1c-producing Escherichia coli strains: phenotypic and genetic characterization and association with human disease. J Clin Microbiol 2003; 41:2448–2453 [View Article][PubMed]
    [Google Scholar]
  31. Ramachandran V, Brett K, Hornitzky MA, Dowton M, Bettelheim KA et al. Distribution of intimin subtypes among Escherichia coli isolates from ruminant and human sources. J Clin Microbiol 2003; 41:5022–5032 [View Article][PubMed]
    [Google Scholar]
  32. Brett KN, Ramachandran V, Hornitzky MA, Bettelheim KA, Walker MJ et al. stx1c is the most common Shiga toxin 1 subtype among Shiga toxin-producing Escherichia coli isolates from sheep but not among isolates from cattle. J Clin Microbiol 2003; 41:926–936 [View Article][PubMed]
    [Google Scholar]
  33. Tasara T, Fierz L, Klumpp J, Schmidt H, Stephan R. Draft Genome Sequences of Five Shiga Toxin-Producing Escherichia coli Isolates Harboring the New and Recently Described Subtilase Cytotoxin Allelic Variant subAB2-3. Genome Announc 2017; 5:e01582-16 [View Article][PubMed]
    [Google Scholar]
  34. Ramachandran V, Hornitzky MA, Bettelheim KA, Walker MJ, Djordjevic SP. The common ovine Shiga toxin 2-containing Escherichia coli serotypes and human isolates of the same serotypes possess a Stx2d toxin type. J Clin Microbiol 2001; 39:1932–1937 [View Article][PubMed]
    [Google Scholar]
  35. Djordjevic SP, Ramachandran V, Bettelheim KA, Vanselow BA, Holst P et al. Serotypes and virulence gene profiles of Shiga toxin-producing Escherichia coli strains isolated from feces of pasture-fed and lot-fed sheep. Appl Environ Microbiol 2004; 70:3910–3917 [View Article][PubMed]
    [Google Scholar]
  36. Michelacci V, Tozzoli R, Caprioli A, Martínez R, Scheutz F et al. A new pathogenicity island carrying an allelic variant of the subtilase cytotoxin is common among Shiga toxin producing Escherichia coli of human and ovine origin. Clin Microbiol Infect 2013; 19:E149–E156 [View Article][PubMed]
    [Google Scholar]
  37. Mammarappallil JG, Elsinghorst EA. Epithelial cell adherence mediated by the enterotoxigenic Escherichia coli TIA protein. Infect Immun 2000; 68:6595–6601 [View Article][PubMed]
    [Google Scholar]
  38. Ingersoll MA, Moss JE, Weinrauch Y, Fisher PE, Groisman EA et al. The ShiA protein encoded by the Shigella flexneri SHI-2 pathogenicity island attenuates inflammation. Cell Microbiol 2003; 5:797–807 [View Article][PubMed]
    [Google Scholar]
  39. Ingersoll MA, Zychlinsky A. ShiA abrogates the innate T-cell response to Shigella flexneri infection. Infect Immun 2006; 74:2317–2327 [View Article][PubMed]
    [Google Scholar]
  40. McKinnon J, Roy Chowdhury P, Djordjevic SP. Genomic analysis of multidrug-resistant Escherichia coli ST58 causing urosepsis. Int J Antimicrob Agents 2018; 52:430–435 [View Article][PubMed]
    [Google Scholar]
  41. Reid CJ, Wyrsch ER, Roy Chowdhury P, Zingali T, Liu M et al. Porcine commensal Escherichia coli: a reservoir for class 1 integrons associated with IS26. Microb Genom 2017; 3: [View Article][PubMed]
    [Google Scholar]
  42. Sacramento AG, Fernandes MR, Sellera FP, Muñoz ME, Vivas R et al. Genomic analysis of MCR-1 and CTX-M-8 co-producing Escherichia coli ST58 isolated from a polluted mangrove ecosystem in Brazil. J Glob Antimicrob Resist 2018; 15:288–289 [View Article][PubMed]
    [Google Scholar]
  43. Wyrsch ER, Roy Chowdhury P, Wallis L, Cummins ML, Zingali T et al. Whole genome sequence analysis of environmental Escherichia coli from the faeces of straw-necked IBIS (Threskiornis spinicollis) nesting on inland wetlands. manuscript submitted for publication.
  44. Cummins ML, Reid CJ, Roy Chowdhury P, Bushell RN, Esbert N et al. Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microb Genom 2019; 5: [View Article][PubMed]
    [Google Scholar]
  45. Harmer CJ, Hall RM. IS26-Mediated formation of transposons carrying antibiotic resistance genes. mSphere 2016; 1: [View Article][PubMed]
    [Google Scholar]
  46. Leuko S, Goh F, Ibáñez-Peral R, Burns BP, Walter MR et al. Lysis efficiency of standard DNA extraction methods for Halococcus spp. in an organic rich environment. Extremophiles 2008; 12:301–308 [View Article][PubMed]
    [Google Scholar]
  47. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010; 5:e11147 [View Article][PubMed]
    [Google Scholar]
  48. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article][PubMed]
    [Google Scholar]
  49. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–D36 [View Article][PubMed]
    [Google Scholar]
  50. Bertelli C, Laird MR, Williams KP, Lau BY et al.Simon Fraser University Research Computing Group Simon Fraser University Research Computing Group. Island Viewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017; 45:W30–W35 [View Article][PubMed]
    [Google Scholar]
  51. Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 2014; 30:3276–3278 [View Article][PubMed]
    [Google Scholar]
  52. Edgar RC. Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113 [View Article][PubMed]
    [Google Scholar]
  53. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018; 31: [View Article][PubMed]
    [Google Scholar]
  54. Gaytán MO, Martínez-Santos VI, Soto E, González-Pedrajo B. Type three secretion system in attaching and effacing pathogens. Front Cell Infect Microbiol 2016; 6:129 [View Article][PubMed]
    [Google Scholar]
  55. Ma J, Sun M, Bao Y, Pan Z, Zhang W et al. Genetic diversity and features analysis of type VI secretion systems loci in avian pathogenic Escherichia coli by wide genomic scanning. Infect Genet Evol 2013; 20:454–464 [View Article][PubMed]
    [Google Scholar]
  56. Nüesch-Inderbinen MT, Funk J, Cernela N, Tasara T, Klumpp J et al. Prevalence of subtilase cytotoxin-encoding subAB variants among Shiga toxin-producing Escherichia coli strains isolated from wild ruminants and sheep differs from that of cattle and pigs and is predominated by the new allelic variant subAB2-2. Int J Med Microbiol 2015; 305:124–128 [View Article][PubMed]
    [Google Scholar]
  57. Vassiliadis G, Destoumieux-Garzón D, Lombard C, Rebuffat S, Peduzzi J. Isolation and characterization of two members of the siderophore-microcin family, microcins M and H47. Antimicrob Agents Chemother 2010; 54:288–297 [View Article][PubMed]
    [Google Scholar]
  58. Buts L, Bouckaert J, De Genst E, Loris R, Oscarson S et al. The fimbrial adhesin F17-G of enterotoxigenic Escherichia coli has an immunoglobulin-like lectin domain that binds N-acetylglucosamine. Mol Microbiol 2003; 49:705–715 [View Article][PubMed]
    [Google Scholar]
  59. Ristow LC, Welch RA. Rtx toxins Ambush immunity's first cellular responders. Toxins 2019; 11:720 [View Article][PubMed]
    [Google Scholar]
  60. Vo JL, Martínez Ortiz GC, Subedi P, Keerthikumar S, Mathivanan S et al. Autotransporter adhesins in Escherichia coli pathogenesis. Proteomics 2017; 17: [View Article][PubMed]
    [Google Scholar]
  61. Carroll AC, Wong A. Plasmid persistence: costs, benefits, and the plasmid paradox. Can J Microbiol 2018; 64:293–304 [View Article][PubMed]
    [Google Scholar]
  62. Roy Chowdhury P, McKinnon J, Liu M, Djordjevic SP. Multidrug Resistant Uropathogenic Escherichia coli ST405 With a Novel, Composite IS26 Transposon in a Unique Chromosomal Location. Front Microbiol 2018; 9:3212 [View Article][PubMed]
    [Google Scholar]
  63. Harmer CJ, Moran RA, Hall RM. Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. mBio 2014; 5:e01801–01814 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000387
Loading
/content/journal/mgen/10.1099/mgen.0.000387
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error