Skip to main content
Log in

Influence of Electrolyte Composition on Morphology of Titanium Dioxide Films Obtained by Titanium Anodization in a Circulated Mixing Cell

  • NANOSTRUCTURES, NANOTUBES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract—Highly ordered films from individual TiO2 nanotubes (NTs) with controlled geometric characteristics were obtained by potentiostatic anodization of titanium in an electrochemical cell with flow-through circulation of the solution and a cooling system for it placed outside the cell at a temperature of 25 ± 0.5°C. The study shows how a wide concentration range of water (0–15%) and ammonium fluoride (0.1–2.0%) in ethylene glycol (EG) influences the morphology and composition of the obtained TiO2 NTs. It was found that the most ordered structure of TiO2 NTs forms when the water content in the anodizing solution is 0.5–4.0% and the proportion of NTs in the hexagonal coordination reaches 75%. It is shown that fluoride ion and water concentration in EG do not affect the chemical state and concentration of elements in the resulting nanostructures. X-ray photoelectron spectroscopy revealed that titanium in the obtained samples is in the form Ti4+ and Ti3+ with a relative proportion of the latter of 8 ± 2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. M. Macak, H. Hildebrand, U. Marten-Jahns, and P. Schmuki, J. Electroanal. Chem. 621, 254 (2008).

    Article  CAS  Google Scholar 

  2. K. Indira, U. Kamachi, T. Mudali, et al., J. Bio-Tribocorros. 28 (1), 1 (2015).

  3. T. N. Patrusheva, V. A. Fedyaev, S. D. Kirik, et al., Theor. Found. Chem. Eng. 51, 759 (2017).

    Article  CAS  Google Scholar 

  4. K. Ryota, K. Yasuo, B. Mitsuo, et al., J. Electrochem. Soc. 159, 629 (2012).

    Google Scholar 

  5. V. A. Nebol’sin, B. A. Spiridonov, A. I. Dunaev, and E. V. Bogdanovich, Inorg. Mater. 53, 595 (2017).

    Article  Google Scholar 

  6. D. I. Petukhov, A. A. Eliseev, I. V. Kolesnik, et al., Microporous Mesoporous Mater. 114, 440 (2008).

    Article  CAS  Google Scholar 

  7. M. Atsunori, S. Srimala, and K. Warapong, J. Asian Ceram. Soc., No. 1, 203 (2013).

  8. Xie Quan, Shaogui Yang, Xiuli Ruan, and Huiming Zhao, Environ. Sci. Technol. 39, 3770 (2005).

    Article  CAS  Google Scholar 

  9. S. Noothongkaew, H. Jung Kyun, O. Thumtan, and K.-S. An, Mater. Lett. 233, 153 (2018).

    Article  CAS  Google Scholar 

  10. Ghafar Ali, Chong Chen, Seung Hwa Yoo, et al., Nanoscale Res. Lett., No. 6, 332 (2011).

  11. G. D. Sulka, J. Kapusta-Kolodziej, A. Brzózka, and M. Jaskuła, Electrochim. Acta 55, 4359 (2010).

    Article  CAS  Google Scholar 

  12. P. Acevedo-Pena, L. Lartundo-Rojas, and I. Gonzalez, J. Solid State Electrochem. 17, 2939 (2013).

    Article  CAS  Google Scholar 

  13. D. I. Petukhov, A. A. Eliseev, I. V. Kolesnik, et al., J. Porous Mater. 19, 71 (2012).

    Article  CAS  Google Scholar 

  14. N. A. Belich, A. V. Grigor’eva, D. I. Petukhov, A. V. Sidorov, A. E. Gol’dt, and E. A. Gudilin, Nanotechnol. Russ. 10, 345 (2015).

    Article  CAS  Google Scholar 

  15. Z. Jedi-Soltanabadi, M. Ghoranneviss, Z. Ghorannevis, and H. Akbari, Vacuum 155, 387 (2018).

    Article  CAS  Google Scholar 

  16. S. Ozkan, A. Mazare, and P. Schmuki, Electrochim. Acta 268, 435 (2018).

    Article  CAS  Google Scholar 

  17. X. Wang, Ya. Li, H. Song, et al., RSC Adv., No. 6, 8333 (2016).

  18. Y. Sun, Q. Zhao, G. Wang, and K. Yan, J. Alloys Compd. 711, 514 (2017).

    Article  CAS  Google Scholar 

  19. Yujing Xue, Yan Sun, Guixin Wang, et al., Electrochim. Acta 155, 312 (2015).

    Article  CAS  Google Scholar 

  20. E. O. Gordeeva, I. V. Roslyakov, A. I. Sadykov, T. A. Suchkova, D. I. Petukhov, T. B. Shatalova, and K. S. Napolskii, Russ. J. Electrochem. 54, 990 (2018).

    Article  CAS  Google Scholar 

  21. D. A. Buldakov, D. I. Petukhov, I. V. Kolesnik, A. A. Eliseev, A. V. Lukashin, and Yu. D. Tret’yakov, Nanotechnol. Russ. 4, 296 (2009).

    Article  Google Scholar 

  22. K. Suriye, P. Praserthdam, and B. Jongsomjit, Appl. Surf. Sci. 253, 3849 (2007).

    Article  CAS  Google Scholar 

  23. P. Wang, P.-S. Yap, and T.-T. Lim, Appl. Catal. A 399, 252 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of Mendeleev University of Chemical Technology for the study of samples using SEM.

Funding

The study was supported by the Russian Science Foundation (project no. 19-73-00192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Morozov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.N., Denisenko, A.V., Mihaylichenko, A.I. et al. Influence of Electrolyte Composition on Morphology of Titanium Dioxide Films Obtained by Titanium Anodization in a Circulated Mixing Cell. Nanotechnol Russia 14, 444–450 (2019). https://doi.org/10.1134/S1995078019050100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019050100

Navigation