Skip to main content
Log in

The Effect of Nanosized Silicon Molybdate Anions on the Plasma Membrane of Human Fetal Fibroblasts

  • NANOBIOLOGY AND GENETICS, OMICS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

We used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to study changes in the composition of the plasma membranes of human fetal fibroblasts under the action of nanosized anions of silicon molybdic acid. The dependences of the mass spectra of the main lipids of the plasma membranes on the silicon molybdate concentration were measured and interpreted; the dependences correlate with the layer-by-layer distributions and with the affinity of cholesterol for phospholipids. A new effect for cell biochemistry was discovered, that is, a significant decrease in the relative concentrations of cholesterol and sphingomyelin in plasma membranes under the effect of multiply charged heteropoly anions (HPAs). In aqueous silicon molybdate solutions with a concentration of c ≈ 10 µM/L and an exposure time of 48 h, the amount of cholesterol in plasma membranes decreased by 2–2.5 times, while the amount of sphingomyelin decreased by 20–25%. A new mechanism is proposed for the initial effect of HPA on plasma membranes, which consists of selective etching by multiply charged anions. According to the proposed mechanism, cholesterol and sphingomyelin, the main regulators of permeability and microviscosity of plasma membranes, are extracted from the plasma membrane at the first stage of the interaction of the polyoxometallate anion with the cell. As a consequence of the increased permeability of the plasma membranes in cells, acceleration of vital transmembrane and lateral processes may occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. The well-known values of the affinity of SM and PC for cholesterol, δ, are in magnitude in the same sequence as the scale of the initial decrease of the corresponding peaks in the mass spectra: δ (SM) > δ (PC) [42]. It is natural to assume that in some cases, cholesterol molecules leave the plasma membrane simultaneously with the bipolar head parts of phospholipids (SM, PC, PS, and PE). The similarity of the concentration dependences of the peaks of cholesterol (m/z 369) and SM (m/z 265) (Fig. 3) confirms this assumption.

REFERENCES

  1. G. I. T. Cooper, P. I. Kitson, R. Winter, et al., “Modular redox-active inorganic chemical cells: iCHELLs,” Angew. Chem., Int. Ed. 50, 10373 (2011). https://doi.org/10.1002/anie.201105068

    Article  CAS  Google Scholar 

  2. I. K. Song, I. E. Lyons, and M. A. Barteau, “Correlation of alkane oxidation performance with STM and tunneling spectroscopy measurements of heteropolyacid catalysts,” Catal. Today 81, 137 (2003). https://doi.org/10.1016/S0920-5861(03)00107-X

    Article  CAS  Google Scholar 

  3. M. T. Pope, “Polyoxometalates,” in Encyclopedia of Inorganic and Bioinorganic Chemistry, 1st ed., Ed. by S. R. A. Somerset (Wiley, NJ, 2011).

    Google Scholar 

  4. J. T. Rhule, C. L. Hill, D. A. Judd, et al., “Polyoxometalates in medicine,” Chem. Rev. 98, 327 (1998). https://doi.org/10.1021/cr960396q

    Article  CAS  Google Scholar 

  5. B. Hasenknopf, “Polyoxometalates: Introduction to a class of inorganic compounds and their biomedical applications,” Front. Biosci. 10, 275 (2005). https://doi.org/10.2741/1527

    Article  CAS  Google Scholar 

  6. A. Bijelic, M. Aureliano, and A. Rompel, “The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives,” Chem. Commun. 54, 1143 (2018). https://doi.org/10.1039/C7CC07549A

    Article  Google Scholar 

  7. X. Wang, J. Wang, W. Zhang, et al., “Inhibition of human immunodeficiency virus type 1 entry by a Keggin polyoxometalate,” Viruses 10, 265 (2018). https://doi.org/10.3390/v10050265

    Article  CAS  Google Scholar 

  8. N. Gao, H. Sun, K. Dong, et al., “Transition-metal-substituted polyoxometalate derivatives as functional antiamyloid agents for Alzheimer’s disease,” Nat. Commun. 5, 3422 (2014). https://doi.org/10.1155/2015/753751

    Article  CAS  Google Scholar 

  9. Y. Qi, Y. Xiang, J. Wang, et al., “Inhibition of hepatitis C virus infection by polyoxometalates,” Antiviral Res. 100, 392 (2013). https://doi.org/10.2217/fvl.14.89

    Article  CAS  Google Scholar 

  10. W. Qi, Y. Qin, Y. Qi, et al., “In vitro antitumor activity of a Keggin vanadium-substituted polyoxomolybdate and its ctDNA binding properties,” J. Chem. 2015, 753751 (2014). https://doi.org/10.1155/2015/753751

    Article  CAS  Google Scholar 

  11. L. Wang, K. Yu, J. Zhu, et al., “Inhibitory effects of different substituted transition metal-based Krebs-type sandwich structures on human hepatocellular carcinoma cells,” Dalton Trans. 46, 2874 (2017). https://doi.org/10.1039/C6DT02420C

    Article  CAS  Google Scholar 

  12. G. Geisberger, E. B. Gyenge, C. Maake, et al., “Trimethyl and carboxymethyl chitosan carriers for bio-active polymer-inorganic nanocomposites,” Carbohydr. Res. 91, 58 (2013). https://doi.org/10.1016/j.carbpol.2012.08.009

    Article  CAS  Google Scholar 

  13. S. Dianat, A. K. Bordbar, S. Tangestaninejad, et al., “In vitro antitumor activity of parent and nano-encapsulated mono cobalt-substituted Keggin polyoxotungstate and its ctDNA binding properties,” Chem.-Biol. Interact. 215, 25 (2014). https://doi.org/10.1016/j.cbi.2014.02.011

    Article  CAS  Google Scholar 

  14. S. Dianat, A. K. Bordbar, S. Tangestaninejad, et al., “CtDNA interaction of co-containing keggin polyoxomolybdate and in vitro antitumor activity of free and its nano-encapsulated derivatives,” J. Iran. Chem. Soc. 13, 1895 (2016). https://doi.org/10.1007/s13738-016-0906-y

    Article  CAS  Google Scholar 

  15. A. Bijelic, M. Aureliano, and A. Rompel, “Polyoxometalates as potential next-generation metallodrugs in the combat against cancer,” Angew. Chem., Int. Ed. Engl. 58, 2980 (2019). https://doi.org/10.1002/anie.201803868

    Article  CAS  Google Scholar 

  16. N. I. Gumerova, E. Al-Sayed, L. Krivosudsky, et al., “Antibacterial activity of polyoxometalates against moraxella catarrhalis,” Front. Chem. 6, 336 (2018). https://doi.org/10.3389/fchem.2018.00336

    Article  CAS  Google Scholar 

  17. O. A. Lopatina, I. A. Suetina, M. V. Mezentseva, L. I. Russu, S. A. Kovalevskiy, E. M. Balashov, S. A. Ulasevich, A. I. Kulak, D. A. Kulemin, N. M. Ivashkevich, and F. I. Dalidchik, “Effects of anion charge on the biological activity of Keggin heteropoly acids,” Russ. J. Phys. Chem. B 14, 81 (2020).

    Article  CAS  Google Scholar 

  18. H. Nabika, Y. Inomata, E. Itoh, and K. Unoura, “Activity of Keggin and Dawson polyoxometalates toward model cell membrane,” RSC Adv. 3, 21271 (2013). https://doi.org/10.1039/C3RA41522H

    Article  CAS  Google Scholar 

  19. H. Nabika, A. Sakamoto, R. Tero, et al., “Imaging characterization of cluster-induced morphological changes of a model cell membrane,” J. Phys. Chem. C 120, 15640 (2016). https://doi.org/10.1021/acs.jpcc.5b08014

    Article  CAS  Google Scholar 

  20. B. Jing, M. Hutin, E. Connor, et al., “Polyoxometalate macroion induced phase and morphology instability of lipid membrane,” Chem. Sci. 4, 3818 (2013). https://doi.org/10.1039/C3SC51404H

    Article  CAS  Google Scholar 

  21. D. Kobayashi, Y. Ouchi, M. Sadakane, et al., “Structural dependence of the effects of polyoxometalates on liposome collapse activity,” Chem. Lett. 46, 533 (2017). https://doi.org/10.1246/cl.161172

    Article  CAS  Google Scholar 

  22. D. Kobayashi, H. Nakahara, O. Shibata, et al., “Interplay of hydrophobic and electrostatic interactions between polyoxometalates and lipid molecules,” J. Phys. Chem. C 121, 12895 (2017). https://doi.org/10.1021/acs.jpcc.7b01774

    Article  CAS  Google Scholar 

  23. V. G. Ivkov and G. N. Berestovskii, Biological Membrane Lipid Bilayer (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  24. K. Chughtai and R. M. Heeren, “Mass spectrometry imaging for biomedical tissue analysis,” Chem. Rev. 110, 3237 (2010). https://doi.org/10.1021/cr100012c

    Article  CAS  Google Scholar 

  25. X. Hua, M. J. Marshall, Y. Xiong, et al., “Two-dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry,” Biomicrofluidics 9, 031101 (2015). https://doi.org/10.1039/c3ay26513g

    Article  CAS  Google Scholar 

  26. C. Bich, D. Touboul, and A. Brunelle, “Cluster TOF-SIMS imaging as a tool for micrometric histology of lipids in tissue,” Mass Spectrosc. Rev. 33, 442 (2014). https://doi.org/10.1002/mas.21399

    Article  CAS  Google Scholar 

  27. N. Winograd, “Gas cluster ion beams for secondary ion mass spectrometry,” Ann. Rev. Anal. Chem. 11, 29 (2018). https://doi.org/10.1146/annurev-anchem-061516-045249

    Article  CAS  Google Scholar 

  28. M. K. Passarelli and N. Winograd, “Lipid imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS),” Biochim. Biophys. Acta 1811, 976 (2011). https://doi.org/10.1016/j.bbalip.2011.05.007

    Article  CAS  Google Scholar 

  29. Q. P. Vanbellingen, A. Castellanos, M. Rodriguez-Silva, et al., “Analysis of chemotherapeutic drug delivery at the single cell level using 3D-MSI-TîF-SIMS,” J. Am. Soc. Mass Spectrom. 27, 2033 (2016). https://doi.org/10.1007/s13361-016-1485-y

    Article  CAS  Google Scholar 

  30. H. Jungnickel, P. Laux, and A. Luch, “Time-of-flight secondary ion mass spectrometry (ToF-SIMS): A new tool for the analysis of toxicological effects on single cell level,” Toxics 4, 5 (2016). https://doi.org/10.3390/toxics4010005

    Article  CAS  Google Scholar 

  31. N. Winograd, “Imaging mass spectrometry on the nanoscale with cluster ion beams,” Anal. Chem. 87, 328 (2015). https://doi.org/10.1021/ac503650p

    Article  CAS  Google Scholar 

  32. A. G. Pogopelov, A. A. Gulin, V. N. Pogopelova, A. I. Panait, M. A. Pogorelova and V. A. Nadtochenko, “The use of ToF-SIMS for analysis of bioorganic samples,” Biophysics 63, 215 (2018).

    Article  Google Scholar 

  33. M. S. Wagner and D. G. Castner, “Characterization of adsorbed protein films by time-of-flight secondary ion mass spectrometry with principal component analysis,” Langmuir 17, 4649 (2001). https://doi.org/10.1021/la001209t

    Article  CAS  Google Scholar 

  34. A. G. Sostarecz, C. M. McQuaw, A. G. Ewing, and N. Winograd, “Phosphatidylethanolamine-induced cholesterol domains chemically identified with mass spectrometric imaging,” J. Am. Chem. Soc. 126, 13882 (2004). https://doi.org/10.1021/ja0472127

    Article  CAS  Google Scholar 

  35. M. Urbini, V. Petito, F. de Notaristefani, et al., “ToF-SIMS and principal component analysis of lipids and amino acids from inflamed and dysplastic human colonic mucosa,” Anal. Bioanal. Chem. 409, 6097 (2017). https://doi.org/10.1007/s00216-017-0546-9

    Article  CAS  Google Scholar 

  36. R. Bro and A. K. Smilde, “Principal component analysis,” Anal. Methods 6, 2812 (2014). https://doi.org/10.1039/C3AY41907J

    Article  CAS  Google Scholar 

  37. S. A. Kovalevskii, O. A. Lopatina, F. I. Dalidchik, O. V. Baklanova, I. A. Suetina, L. I. Russu, E. A. Gushchina, E. I. Isaeva, and M. V. Mezentseva, “Effect of Keggin heteropoly acids on human embryo fibroblast cells,” Nanotechnol. Russ. 13, 400 (2018).

    Article  CAS  Google Scholar 

  38. I. A. Suetina, M. V. Mezentseva, E. A. Gushchina, et al., “Study of the growth activity and viability of cultured human embryo fibroblasts under the influence of polyoxametallates,” Inform. Byull. Kletoch. Kul’t. 31, 67 (2015).

    Google Scholar 

  39. F. Draude, M. Korsgen, A. Pelster, et al., “Characterization of freeze-fractured epithelial plasma membranes on nanometer scale with ToF-SIMS,” Anal. Bioanal. Chem. 407, 2203 (2014). .https://doi.org/10.1007/s00216-014-8334-2

    Article  CAS  Google Scholar 

  40. L. D. Bergel’son, Membranes, Molecules, Cells (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  41. R. Bittman and S. Rottem, “Distribution of cholesterol between the outer and inner halves of the lipid bilayer of mycoplasma cell membranes,” Biochem. Biophys. Res. Commun. 71, 318 (1976). https://doi.org/10.1016/0006-291x(76)90285-0

    Article  CAS  Google Scholar 

  42. L. I. Ivanova, “The effect of cholesterol on the plasma membranes of tumor and normal cells,” Cand. Sci. (Biol.) Dissertation (Moscow, 1984), p. 114.

  43. V. G. Ivkov and G. N. Berestovskii, Biological Membrane Lipid Bilayer (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  44. J. Cui, X. Fu, J. Xie, et al., “Critical role of cellular cholesterol in bovine rotavirus infection,” Virology J. 11, 98 (2014). https://doi.org/10.1186/1743-422X-11-98

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out as part of a state assignment on the topic “Fundamentals of creating a new generation of nanostructured systems with unique operational electrical and magnetic properties” (project no. 0082-2018-0003, registration no. AAAA-A18-118012390045-2) and supported by the Russian Foundation for Basic Research (project no. 18-54-00004 Bel_a) and the Belarusian Foundation for Basic Research (agreement no. Kh18R-110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. M. Balashov or F. I. Dalidchik.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalevskiy, S.A., Gulin, A.A., Lopatina, O.A. et al. The Effect of Nanosized Silicon Molybdate Anions on the Plasma Membrane of Human Fetal Fibroblasts. Nanotechnol Russia 14, 481–488 (2019). https://doi.org/10.1134/S1995078019050082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019050082

Navigation