Skip to main content
Log in

The Efficiency of Carbon Nanotubes in Reinforcing Structural Polymers

  • REVIEWS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The carbon nanotube efficiency index in a nanocomposite is introduced as the ratio of the load carried by carbon nanotubes (CNTs) at a given average deformation of a matrix to the maximum possible load that can be transferred to the nanotubes at this deformation. The best published results on polymer strengthening with an assessment of CNT efficiency are reviewed. Analysis of the data in publications shows that the upper boundary of CNT efficiency is reached in polymers if a network of interconnected nanotubes is formed inside the polymer. Such a network can be formed by integrating nanotubes into a polymer matrix through covalent binding of nanotubes or by physical entanglement of nanotubes with each other. In thermoplastic crystallizing polymers, the upper boundary of CNT efficiency can also be reached by increasing the degree of polymer crystallinity due to participation of carbon nanotubes and improvement of the microstructure of the polymer including the orientational elongation of the nanocomposite. Nanocomposites of polymers with CNTs are promising for practical application if the nanotube efficiency is close to or exceeds the upper limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. L. Bazhenov, A. A. Berlin, A. A. Kul’kov, and V. G. Oshmyan, Polymer Composite Materials. Durability and Technology (Intellekt, Dolgoprudnyi, 2010) [in Russian].

  2. J. Chen, X. Gao, and D. Xu, Adv. Mater. Sci. Eng. 2019, 5268267 (2019).

    Google Scholar 

  3. E. N. Kablov, S. V. Kondrashov, and G. Yu. Yurkov, Nanotechnol. Russ. 8, 163 (2013).

    Google Scholar 

  4. R. K. Gupta, E. Kennel, and K.-J. Kim, Polymer Nanocomposites, Handbook (CRC, Taylor and Francis Group, Boca Raton, London, 2010).

    Google Scholar 

  5. E. R. Badamshina, M. P. Gafurova, and Ya. I. Estrin, Russ. Chem. Rev. 79, 945 (2010).

    CAS  Google Scholar 

  6. E. G. Rakov, Russ. Chem. Rev. 2, 27 (2013).

    Google Scholar 

  7. T. F. Irzhak and V. I. Irzhak, Polym. Sci., A 59, 791 (2017).

  8. H. Qian, E. S. Greenhalgh, M. S. P. Shaffer, and A. Bismarck, J. Mater. Chem. 20, 4751 (2010).

    CAS  Google Scholar 

  9. M. Moniruzzaman and K. I. Winey, Macromolecules 39, 5194 (2006).

    CAS  Google Scholar 

  10. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, Carbon 44, 1624 (2006).

    CAS  Google Scholar 

  11. B. G. Min, H. G. Chae, M. L. Minus, and S. Kumar, “Polymer/carbon nanotube composite fibers: An overview,” in Functional Composites of Carbon Nanotubes and Applications, Ed. by K.-P. Lee, A. I. Gopalan, and D. S. Marquis (Research Signpost, 2009), p. 43.

    Google Scholar 

  12. S. I. Yengejeh, S. A. Kazemi, and A. Ochsner, Comput. Mater. Sci. 136, 85 (2017).

    Google Scholar 

  13. Ch. Tsai, Ch. Zhang, D. A. Jack, et al., J. Nanosci. Nanotechnol. 11, 2132 (2011).

    CAS  Google Scholar 

  14. J. C. Halpin and J. L. Karlos, Polym. Eng. Sci. 16, 344 (1976).

    CAS  Google Scholar 

  15. A. V. Krestinin, N. N. Dremova, E. I. Knerel’man, et al., Nanotechnol. Russ. 10, 537 (2015).

    CAS  Google Scholar 

  16. M.-F. Yu, S. F. Bradley, S. Arepalli, and R. S. Ruoff, Phys. Rev. Lett. 84, 5552 (2000).

    CAS  Google Scholar 

  17. H. Krenchel, Fibre Reinforcement (Akademisk, Copenhagen, 1964).

    Google Scholar 

  18. H. L. Cox, Brit. J. Appl. Phys. 3, 72 (1952).

    Google Scholar 

  19. D. Hull and T. W. Clyne, An Introduction to Composite Materials, 2nd ed., Solid State Science Series (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  20. Z. P. Wang, P. Giselli, and T. Peijs, Nanotecnology 18, 455709 (2007).

    Google Scholar 

  21. A. E. Dvoretskii, V. I. Demichev, N. G. Alexandrov, et al., Konstrukts. Kompos. Mater., No. 3, 34 (2017).

  22. A. V. Krestinin and A. P. Kharitonov, Polym. Sci., B 60, 516 (2018).

  23. A. V. Krestinin and V. L. Shestakov, RF Patent No. 2660852 (2017).

  24. J. Zhu, J-D. Kim, H. Peng, et al., Nano Lett. 3, 1107 (2003).

    CAS  Google Scholar 

  25. J. Zhu, H. Peng, F. Rodriguez-Macias, et al., Adv. Funct. Mater. 14, 643 (2004).

    CAS  Google Scholar 

  26. S. Wang, R. Liang, T. Liu, et al., Polym. Compos. 30, 1050 (2009).

    CAS  Google Scholar 

  27. S. Wang, Z. Liang, T. Liu, et al., Nanotecnology 17, 1551 (2006).

    CAS  Google Scholar 

  28. W. Yuan, J. Feng, Z. Judeh, et al., Chem. Mater. 22, 6542 (2010).

    CAS  Google Scholar 

  29. J. Che, W. Yuan, G. Jiang, et al., Chem. Mater. 21, 1471 (2009).

    CAS  Google Scholar 

  30. A. P. Kharitonov, A. G. Tkachev, A. N. Blohin, et al., Compos. Sci. Technol. 134, 161 (2016).

    CAS  Google Scholar 

  31. S. V. Kondrashov, V. P. Grachev, R. V. Akatenkov, et al., Polymer Sci., Ser. A 56, 330 (2014).

    CAS  Google Scholar 

  32. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, Compos. Sci. Technol. 65, 2300 (2005).

    CAS  Google Scholar 

  33. J. Bai, Carbon 41, 1325 (2003).

    CAS  Google Scholar 

  34. C. L. Tucker and E. Liang, Compos. Sci. Technol. 59, 655 (1999).

    Google Scholar 

  35. R. J. Lagow, R. B. Badachhape, J. L. Wood, and J. L. Margrave, Chem. Phys., Dalton Trans. 12, 1268 (1974).

    Google Scholar 

  36. V. N. Khabashesku, Russ. Chem. Rev. 80, 705 (2011).

    CAS  Google Scholar 

  37. V. E. Smirnova, I. V. Govman, E. M. Ivan’kova, et al., Polym. Sci., A 55, 268 (2013).

  38. I. Gofman, B. Zhang, W. Zang, et al., J. Polym. Res. 20, 258 (2013).

    Google Scholar 

  39. D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl. Phys. Lett. 76, 2868 (2000).

    CAS  Google Scholar 

  40. A. Yu, H. Hu, E. Bekyarova, et al., Compos. Sci. Technol. 66, 1190 (2006).

    CAS  Google Scholar 

  41. J. N. Coleman, M. Cadek, R. Blake, et al., Adv. Funct. Mater. 14, 791 (2004).

    CAS  Google Scholar 

  42. X. Zhang, T. Liu, T. V. Sreekumar, et al., Nano Lett. 3, 1285 (2003).

    CAS  Google Scholar 

  43. K. P. Ryan, M. Cadek, V. Nicolosi, et al., Synth. Met. 156, 332 (2006).

    CAS  Google Scholar 

  44. T. X. Liu, I. Y. Phang, L. Shen, et al., Macromolecules 37, 7214 (2004).

    CAS  Google Scholar 

  45. N. Mahmood, M. Islam, A. Hameed, et al., J. Comp. Mater. 48, 1197 (2014).

    CAS  Google Scholar 

  46. G. X. Chen, H. S. Kim, B. H. Park, and J. S. Yoon, Polymer 47, 4760 (2006).

    CAS  Google Scholar 

  47. B. Safadi, R. Andrews, and E. A. Grulke, J. Appl. Polym. Sci. 84, 2660 (2002).

    CAS  Google Scholar 

  48. S. Kumar, H. Doshi, M. Srinivasarao, et al., Polymer 43, 1701 (2002).

    CAS  Google Scholar 

  49. R. Haggenmueller, J. E. Fischer, and K. I. Winey, Macromolecules 39, 2964 (2006).

    CAS  Google Scholar 

  50. S. Tzavalas, V. Drakonakis, D. E. Mouzakis, et al., Macromolecules 39, 9150 (2006).

    CAS  Google Scholar 

  51. M. L. Minus, H. G. Chae, and S. Kumar, Polymer 47, 3705 (2006).

    CAS  Google Scholar 

  52. K. P. Ryan, M. Cadek, V. Nicolosi, et al., Synth. Met. 156, 332 (2006).

    CAS  Google Scholar 

  53. T. M. Wu and E. C. Chen, J. Polym. Sci. B 44, 598 (2006).

    CAS  Google Scholar 

  54. K. P. Ryan, S. M. Lipson, A. Drury, et al., Chem. Phys. Lett. 391, 329 (2004).

    CAS  Google Scholar 

  55. J. C. Kearns and R. L. Shambaugh, J. Appl. Polym. Sci. 86, 2079 (2002).

    CAS  Google Scholar 

  56. S. Kumar, H. Doshi, M. Srinivasarao, et al., Polymer 43, 1701 (2002).

    CAS  Google Scholar 

  57. R. Andrews, D. Jacques, A. M. Rao, et al., Appl. Phys. Lett. 75, 1329 (1999).

    CAS  Google Scholar 

  58. J. Gao, M. E. Itkis, A. Yu, et al., J. Am. Chem. Soc. 127, 3847 (2005).

    CAS  Google Scholar 

  59. H. G. Chae, M. L. Minus, and S. Kumar, Polymer 47, 3494 (2006).

    CAS  Google Scholar 

  60. S. Kumar, T. D. Dang, F. E. Arnold, et al., Macromolecules 35, 9039 (2002).

    CAS  Google Scholar 

  61. S. Ruan, P. Gao, and T. X. Yu, Polymer 47, 1604 (2006).

    CAS  Google Scholar 

  62. H. G. Chae, T. V. Sreekumar, T. Uchida, and S. Kumar, Polymer 46, 10925 (2005).

    CAS  Google Scholar 

  63. H. G. Chae, M. L. Minus, A. R. Rasheed, and S. Kumar, Polymer 48, 3781 (2007).

    CAS  Google Scholar 

  64. Y. Liu and S. Kumar, Polym. Rev. 54, 234 (2012).

    Google Scholar 

  65. Y. Zhang, K. Song, J. Meng, and M. L. Minus, ACS Appl. Mater. Interfaces 5, 807 (2013).

    CAS  Google Scholar 

  66. https://ocsial.com.

Download references

Funding

This work was performed under the subject no. 0089-2019-0012 state task (no. of state registration AAAA-A19-119032690060-9) using the equipment of the Analytical Center for Collective Use IPCP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Krestinin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krestinin, A.V. The Efficiency of Carbon Nanotubes in Reinforcing Structural Polymers. Nanotechnol Russia 14, 411–426 (2019). https://doi.org/10.1134/S1995078019050094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019050094

Navigation