Skip to main content
Log in

Synergy of Viscosity Wedge and Squeeze Under Zero Entrainment Velocity in EHL Contacts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In an elastohydrodynamic lubricated (EHL) contact under Zero Entrainment Velocity (ZEV) condition, surfaces cannot be separated by hydrodynamic lift. In this work, two other phenomena responsible for a film thickness build-up in ZEV contacts are studied using a numerical model. First, the thermal effect called “viscosity wedge” is investigated in steady-state conditions. Second, the “squeeze” effect is described in an environment where dynamic (time dependent) loads are considered. Then, both the viscosity wedge and squeeze effects are considered together. For each one of the two mechanisms, a characteristic time is considered. The ratio of these two times allows the identification of a dominant effect. Depending on this ratio, a prediction is attempted using semi-analytical models describing each effect. For an ideal set of parameters, it is shown that the combination of squeeze and viscosity wedge in EHL contact under ZEV allows for an enhanced performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

adapted from Wang et al. [19] (see Eqs. 21 and 22). The numerical values are listed in Table 6

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

adapted from Wang (see Eqs. 21 and 22) are given as references in red and blue, respectively. The black line corresponds to a composite model (Eq. 27) accounting for three regimes named “Slow”, “Intermediate” and “Fast” loading

Similar content being viewed by others

Abbreviations

A :

Steady-state thermal conditions

B :

Transient isothermal conditions

C :

Transient thermal conditions

*:

Semi-analytical formula

1,2:

Solids 1 and 2, respectively

c :

Central—film thickness

f :

Fluid

m :

Minimum—film thickness

min:

Minimum—overtime

a (m):

Dry contact radius(Hertz)

\({a}_{v}\) (K−1):

Parameter for the Murnaghan density formula

\({a}_{\mathrm{C}\mathrm{Y}}\) (−):

Parameter for the Carreau–Yasuda non-Newtonian viscosity formula

\({A}_{1}\) (K):

Coefficient for the WLF viscosity correlation

\({A}_{2}\) (Pa−1):

Coefficient for the WLF viscosity correlation

\({B}_{1}\) (Pa−1):

Coefficient for the WLF viscosity correlation

\({B}_{2}\) (−):

Coefficient for the WLF viscosity correlation

\({C}_{1}\) (−):

Coefficient for the WLF viscosity correlation

\({C}_{2}\) (−):

Coefficient for the WLF viscosity correlation

\({C}_{p}\) (J k g−1 K−1):

Heat capacity

\(E\) (Pa):

Young modulus

\({E}^{^{\prime}}\) (Pa):

Material parameter

F (−):

Variable for the WLF viscosity correlation

\({G}_{\mathrm{C}\mathrm{Y}}\) (Pa):

Parameter for the Carreau–Yasuda non-Newtonian viscosity formula

h (m):

Film thickness

h0 (m):

Rigid body separation

\({h}_{c}^{{\mathrm{W}\mathrm{a}\mathrm{n}\mathrm{g}}^{*}}\) (m):

Transient semi-analytical formula for the prediction of \({h}_{c}\)

\({h}_{m}^{A*}\) (m):

Steady-state semi-analytical formula for the prediction of \({h}_{m}\)

k (W m−1 K−1):

Thermal conductivity

\({K}_{00}\) (−):

Parameter for the Murnaghan density formula

\({K}_{M}\) (−):

Parameter for the Murnaghan density formula

\({K}_{M}^{^{\prime}}\) (−):

Parameter for the Murnaghan density formula

L (−):

Dimensionless Moes parameter

M (−):

Dimensionless Moes parameter

\({n}_{\mathrm{C}\mathrm{Y}}\) (−):

Parameter for the Carreau–Yasuda non-Newtonian viscosity formula

p (Pa):

Pressure

ph (Pa):

Hertz contact pressure

Q (W m−3):

Total heat source

R (m):

Radius of curvature

Req (m):

Equivalent radius of curvature

t (s):

Time

\({t}_{\mathrm{F}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l}}\) (s):

Time at the end of calculation

\({t}_{\mathrm{L}\mathrm{o}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}}\) (s):

Time at which the reference load is reached, the loading time

\({t}_{T}\) (s):

Characteristic thermal time

\(\overline{t}\) (−):

Dimensionless time

\(\overline{{t_{{C|m,\,{\text{min}}}} }}\) (−):

Dimensionless instant at which the minimum value of the minimum film thickness is observed in transient thermal conditions

\(\overline{t} _{T}\) (−):

Characteristic thermal–transient ratio

T (K):

Temperature

\({T}_{0}\) (K):

External temperature

\({T}_{g}\) (K):

Glass transition temperature

\({T}_{g0}\) (K):

Glass transition temperature at ambient pressure

\({T}_{R}\) (K):

Reference temperature

u (m s−1):

Surface velocity

\({U}_{DH}\) (−):

Dimensionless velocity parameter

w (N m−1):

Load per unit length

\({w}_{i}\) (N m−1):

Initial load per unit length

\({w}_{\mathrm{r}\mathrm{e}\mathrm{f}}\) (N m−1):

Reference load per unit length

\(x, y, z\) (m):

Coordinates

\({\alpha }^{*}\) (Pa−1):

Reciprocal asymptotic isoviscous pressure–viscosity coefficient

\({\beta }_{k}\) (K−1):

Temperature–density parameter

\(\delta\) (m):

Equivalent elastic surface displacement of both solids

\(\eta\) (m):

Dynamic viscosity

\({\eta }_{e}\) (k g s−1 m−2):

Generalised viscosity parameter

\({\eta }_{e}^{^{\prime}}\) (k g s−1 m−3):

Generalised viscosity parameter

\({\lambda }^{{Wang}^{*}}\) (−):

Parameter for the transient central film thickness prediction formula

\({\mu }_{g}\) (Pa  s):

Viscosity at glass transition

v (−):

Poisson coefficient

\(\rho\) (k g  m−3):

Density

\({\rho }_{e}\) (k g  m−3):

Generalised density parameter

\({\rho }_{e}^{^{\prime}}\) (k g s):

Generalised density parameter

\(\rho _{{e^{\prime\prime}}}\) (k g m s):

Generalised density parameter

\({\rho }_{R}\) (k g  m−3):

Reference density

\({\rho }^{*}\) (k g  m−3):

Generalised density parameter

\({\left(\frac{\rho }{\eta }\right)}_{e}\) (m s):

Generalised density/viscosity ratio

\({\tau }_{\mathrm{z}x}\) (Pa):

Shear stress along the x-axis

\({\tau }_{\mathrm{e}}\) (Pa):

Shear stress norm

References

  1. Ertel, A.M.: In Russian (hydrodynamic lubrication based on new principles). Nauk SSSR Prikadnaya Math. I Mekhanika 3(2), 41–52 (1939)

    Google Scholar 

  2. Grubin, A.N., Vinogradova, I.E.: In Russian (Investigation of the contact of machine components). Cent. Sci. Res. Inst. Technol. Mech. Eng. 30, 1–2 (1949)

    Google Scholar 

  3. Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts-I-theorectical formulation. J. Lubr. Tech. 98(2), 223–228 (1976)

    Article  Google Scholar 

  4. Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts-III-fully flooded results. J. Lubr. Tech. 99(2), 264–275 (1977)

    Article  CAS  Google Scholar 

  5. Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts-IV-starvation results. J. Lubr. Tech. 99(1), 15–23 (1977)

    Article  Google Scholar 

  6. Moes, H.: Optimum similarity analysis with applications to elastohydrodynamic lubrication. Wear 159(1), 57–66 (1992)

    Article  Google Scholar 

  7. Chittenden, R.J., Dowson, D., Dunn, J.F., Taylor, C.M.: A theoretical analysis of the isothermal elastohydrodynamic lubrication of concentrated contacts I: direction of lubricant entrainment coincident with the major axis of the hertzian contact ellipse. Proc. R. Soc. A 397(1813), 245–269 (1985)

    Google Scholar 

  8. Evans, H.P.: The isothermal elastohydrodynamic lubrication of spheres. J. Tribol. 103(4), 547 (1980)

    Google Scholar 

  9. Venner, C.H.: Multilevel solution of the EHL line and point contact problems. [Ph.D. Thesis] Enschede. University of Twente, (1991)

  10. Bruyere, V., Fillot, N., Morales-Espejel, G.E., Vergne, P.: Computational fluid dynamics and full elasticity model for sliding line thermal elastohydro dynamic contacts. Tribol. Int. 46(1), 3–13 (2012)

    Article  Google Scholar 

  11. Raisin, J., Fillot, N., Dureisseix, D., Vergne, P., Lacour, V.: Characteristic times in transient thermal elastohydrodynamic line contacts”. Tribol. Int. 82, 472–483 (2015)

    Article  Google Scholar 

  12. Cameron, A.: The viscosity wedge. ASLE Trans. 1(2), 248–253 (1958)

    Article  Google Scholar 

  13. Jones, W.R.J., Shogrin, B.A., Kingsbury, E.P.: Long term performance of a retainerless bearing cartridge with an oozing flow lubricator for spacecraft applications. NASA TM-107492. (1997)

  14. Shogrin, B.A., Jones, W.R., Kingsbury, E.P.P., Jansen, M.J., Prahl, J.M.: Experimental study of load carrying capacity of point contacts at zero entrainment velocity. NASA TM-208650. (1998)

  15. Shogrin, B.A., Jones, W.R., Kingsbury, E.P., Prahl, J.M.: Experimental determination of load carrying capacity of point contacts at zero entrainment velocity. NASA TM-208848. (1999)

  16. Thompson, P.: The effect of sliding speed on film thickness and pressure supporting ability of a point contact under zero entrainment velocity conditions. NASA TM-210566, (2000)

  17. Guo, F., Wong, P.L., Yang, P., Yagi, K.: Film formation in EHL point contacts under zero entraining velocity conditions. Tribol. Trans. 45(4), 521–530 (2002)

    Article  CAS  Google Scholar 

  18. Zhang, B., Wang, J.: Enhancement of thermal effect in zero entrainment velocity contact under low surface velocity. Proc. Inst. Mech. Eng. Part J 230(12), 1554–1561 (2016)

    Article  Google Scholar 

  19. Zhang, B., Wang, J., Omasta, M., Kaneta, M.: Variation of surface dimple in point contact thermal EHL under ZEV condition. Tribol. Int. 94, 383–394 (2016)

    Article  Google Scholar 

  20. Guo, F., Yang, P., Wong, P.L.: On the thermal elastohydrodynamic lubrication in opposite sliding circular contacts. Tribol. Int. 34(7), 443–452 (2001)

    Article  Google Scholar 

  21. Yagi, K., Kyogoku, K., Nakahara, T.: Relationship between temperature distribution in EHL film and dimple formation. J. Tribol. 127(3), 658 (2005)

    Article  Google Scholar 

  22. Zhang, B., Wang, J., Omasta, M., Kaneta, M.: Effect of fluid rheology on the thermal EHL under ZEV in line contact. Tribol. Int. 87, 40–49 (2015)

    Article  Google Scholar 

  23. Meziane, B., Vergne, P., Devaux, N., Lafarge, L., Morales-Espejel, G.E., Fillot, N.: Film thickness build-up in zero entrainment velocity wide point contacts. Tribol. Int. 141, 105897 (2020)

    Article  Google Scholar 

  24. Dowson, D., Jones, D.A.: Lubricant entrapment between approaching elastic solids. Nature 214(5091), 947–948 (1967)

    Article  Google Scholar 

  25. Safa, M.M., Gohar, R.: Squeeze films in elastohydrodynamic lubrication. Leeds–Lyon Symposium on Tribology. 10, 227–233 (1985).

  26. Larsson, R., Höglund, E.: Elastohydrodynamic lubrication at pure squeeze motion. Wear 179(1–2), 39–43 (1994)

    Article  CAS  Google Scholar 

  27. Dowson, D., Wang, D.: Impact elastohydrodynamics. Tribol. Ser. 30, 565–582 (1995)

    Article  Google Scholar 

  28. Wang, J., Venner, C.H., Lubrecht, A.A.: Central film thickness prediction for line contacts under pure impact. Tribol. Int. 66, 203–207 (2013)

    Article  Google Scholar 

  29. Venner, C.H., Wang, J., Lubrecht, A.A.: Central film thickness in EHL point contacts under pure impact revisited. Tribol. Int. 100, 1–6 (2016)

    Article  Google Scholar 

  30. Wong, P.L., Li, X.M., Guo, F.: Evidence of lubricant slip on steel surface in EHL contact. Tribol. Int. 61, 116–119 (2013)

    Article  CAS  Google Scholar 

  31. Li, X.M., Guo, F., Wong, P.L.: Shear rate and pressure effects on boundary slippage in highly stressed contacts. Tribol. Int. 59, 147–153 (2013)

    Article  CAS  Google Scholar 

  32. Wheeler, J.-D., Fillot, N., Vergne, P., Philippon, D., Morales Espejel, G.: On the crucial role of ellipticity on elastohydrodynamic film thickness and friction. Proc. Inst. Mech. Eng. Part J. 230(12), 1503–1515 (2016)

    Article  Google Scholar 

  33. Habchi, W.: A full-System Finite Element Approach to Elastohydrodynamic Lubrication Problems: Application to Ultra-low-viscosity Fluids. Lyon, Institut National des Sciences Appliquées de Lyon (2008)

    Google Scholar 

  34. Hertz, H.: Ueber die Berührung fester elastischer Körper. J. für die reine und Angew. Math. (Crelle’s J.) 1882(92), 156–171 (1882)

    Article  Google Scholar 

  35. Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30(9), 244–247 (1944)

    Article  CAS  Google Scholar 

  36. Bair, S., Mary, C., Bouscharain, N., Vergne, P.: An improved Yasutomi correlation for viscosity at high pressure. Proc. Inst. Mech. Eng. Part J. 227(9), 1056–1060 (2013)

    Article  Google Scholar 

  37. Bair, S.: A rough shear-thinning correction for EHD film thickness. Tribol. Trans. 47(3), 361–365 (2004)

    Article  CAS  Google Scholar 

  38. Dowson, D.: A generalized Reynolds equation for fluid-film lubrication. Int. J. Mech. Sci. 4(2), 159–170 (1962)

    Article  Google Scholar 

  39. Wheeler, J.-D., Molimard, J., Devaux, N., Philippon, D., Fillot, N., Vergne, P., Morales-Espejel, G.E.: A generalized differential colorimetric interferometry method: extension to the film thickness measurement of any point contact geometry. Tribol. Trans. 61(4), 648–660 (2018)

    Article  CAS  Google Scholar 

  40. Doki-Thonon, T., Fillot, N., Vergne, P., Morales Espejel, G.E.: Numerical insight into heat transfer and power losses in spinning EHD non-Newtonian point contacts. Proc. Inst. Mech. Eng. Part J 226(1), 23–35 (2012)

    Article  Google Scholar 

  41. Ndiaye, S.-N., Martinie, L., Philippon, D., Devaux, N., Vergne, P.: A quantitative friction-based approach of the limiting shear stress pressure and temperature dependence. Tribol. Lett. 65(4), 149 (2017)

    Article  Google Scholar 

  42. Kaneta, M., Nishikawa, H., Mizui, M., Guo, F.: Impact Elastohydrodynamics in Point Contacts. Proc. Inst. Mech. Eng. Part J. 225(1), 1–12 (2011)

    Article  Google Scholar 

  43. Kaneta, M., Wang, J., Guo, F., Krupka, I., Hartl, M.: Effects of loading process and contact shape on point impact elastohydrodynamics. Tribol. Trans. 55(6), 772–781 (2012)

    Article  CAS  Google Scholar 

  44. Reynolds, O.: IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Philos. Trans. R. Soc. Lond. 177, 157–234 (1886)

    Google Scholar 

  45. Bair, S.: Correlations for the Temperature and Pressure and Composition Dependence of Low-Shear Viscosity. In High Pressure Rheology for Quantitative Elastohydrodynamics, Elsevier, 135–182 (2019)

  46. Vichard, J.P.: Transient effects in the lubrication of hertzian contacts. J. Mech. Eng. Sci. 13(3), 173–189 (1971)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the “Lubricated Interfaces for the Future” research chair established by INSA Lyon and the SKF company. The authors want to thank the rich discussions with Dr. Jonas Stahl from SKF PS&E during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Fillot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Semi-analytical Formula for the Prediction of the Minimum Film Thickness in Steady-State ZEV Contacts

Appendix: Semi-analytical Formula for the Prediction of the Minimum Film Thickness in Steady-State ZEV Contacts

As described in Eqs. 19 and 20, a semi-analytical model was employed to attempt a prediction of the minimum film thickness under steady-state ZEV condition. The given formula was established using the experimental and numerical data measured in [23]. The corresponding study focused on the minimum film thickness in contacts between a sapphire disk and a steel barrel under ZEV condition. With \(293.15 \mathrm{K}\) boundary temperature, the relative difference between the model and the experimental results stays below \(16\%\). This study showed that in the present range of conditions, steel on steel contacts are similar to sapphire on steel ones and their respective minimum film thicknesses are close enough. Complementary calculations were conducted at lower loads in order to expand the range of the study. For material data on the lubricant and steel, refer to Tables 1 and 2, respectively. The material data for sapphire are listed in Table 10. The remaining input conditions are listed in Table 11.

Table 10 Material properties for the sapphire disk used in [23]
Table 11 Input data for the experimental and numerical campaign initially used in [23]. For each configuration, experimental and numerical results were obtained, except for the two lower loads noted (*) for which only numerical results were obtained

Using these values, a curve-fit was established using the method of least squares, as given in Eqs. 28 and 29. This model is confronted to the numerical and experimental results in Fig. 

Fig. 12
figure 12

Ratio of the minimum film thickness over the value of \({h}^{\mathrm{*}}\) as a function of the ratio of the velocity over \({u}^{\mathrm{*}}\)

12. The coefficient of determination for the experimental dataset is \(0.96\); for the numerical dataset, it is \(0.98\).

$$\frac{{h}_{m}^{A*}\left(u,w\right)}{{h}^{*}}={w}^{0.146}\times (1-\mathrm{e}\mathrm{x}\mathrm{p}(-u/{u}^{*}))$$
(28)
$$\frac{{u}^{*}}{{u}_{0}}=1+\mathrm{e}\mathrm{x}\mathrm{p}\left(-\frac{w}{{w}_{0}}\right)$$
(29)

where \(w\) is expressed in \(\mathrm{N}\,{\mathrm{m}}^{-1},\)\({h}^{*}=69.8\, \mathrm{n}\mathrm{m},\)\({u}_{0}=2.74\, \mathrm{m} {\mathrm{s}}^{-1},\)\({w}_{0}=14695\, \mathrm{N} {\mathrm{m}}^{-1}\).

The factor \({\left(\frac{{R}_{\mathrm{e}\mathrm{q}}}{{R}^{*}}\right)}^{-0.42}\) found in Eq. 19 was determined by the method of least squares, using the simulation results of Case A and the partial model given in Eqs. 28 and 29. Because the exponent \(-0.42\) was determined with only two radii, and because these radius values are so close (\(0.01\,\mathrm{m}\) and \(0.0128\,\mathrm{m}\)), extreme precaution should be taken when using the formula in Eq. 19 if one would apply it to very different radius values.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meziane, B., Fillot, N. & Morales-Espejel, G.E. Synergy of Viscosity Wedge and Squeeze Under Zero Entrainment Velocity in EHL Contacts. Tribol Lett 68, 74 (2020). https://doi.org/10.1007/s11249-020-01311-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01311-y

Keywords

Navigation