Skip to main content
Log in

Synthesis and characterization of new binuclear Co(II) and Ni(II) complexes derived from N, N′-bis(4-dimethyl-aminobenzylidene)-benzene-1,3-diamine as active catalysts for hydroxylation of phenol and their antibacterial properties

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the current study, both of Ni(II) and Co(II) complexes were derived from N,N′-bis(4-dimethyl-aminobenzylidene)-benzene-1,3-diamine as a novel ligand. The ligand and complexes were characterized by elemental analysis (CHNS), Fourier transform infrared spectroscopy (FT-IR), Ultraviolet–visible spectroscopy (UV–Vis), ESI mass spectroscopy, conductance, and magnetic moment measurements. Regarding magnetic moment measurements and spectral studies, an octahedral structure was suggested. The free ligand and metal complexes were evaluated in vitro against three bacterial pathogens, including; Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. The growth inhibition zone of Ni(II) and Co(II) complexes was far more extended than the norm. Furthermore, we studied the catalytic activity of these complexes through the hydroxylation of phenol. Comparisons revealed that the catalytic performance of the Ni(II) complex was considerable than that of the Co(II) complex. Four parameters (i.e., duration of reaction, temperature, catalyst amount, and oxidant amount) were regarded for Ni(II) complex (as a catalyst) to achieve an optimum condition for hydroxylation of phenol. Ultimately, adequate time for the reaction was recognized in the 2 h duration and at 60 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xavier DA, Srividhya N (2014) Synthesis and study of Schiff base ligands. IOSR J Appl Chem. https://doi.org/10.9790/5736-071110615

    Article  Google Scholar 

  2. Da Silva CM, Da Silva DL, Modolo LV et al (2011) Schiff bases: a short review of their antimicrobial activities. J Adv Res 2:1–8

    Article  Google Scholar 

  3. Zinatloo-Ajabshir S, Salavati-Niasari M, Hamadanian M (2015) Praseodymium oxide nanostructures: novel solvent-less preparation, characterization and investigation of their optical and photocatalytic properties. RSC Adv 5:33792–33800. https://doi.org/10.1039/c5ra00817d

    Article  CAS  Google Scholar 

  4. Salavati-Niasari M (2004) Synthesis and properties of 16-membered hexaaza macrocycles complexes of copper (II) produced by one-pot template. Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2004.01.010

    Article  Google Scholar 

  5. Salavati-Niasari M, Mohandes F, Davar F et al (2009) Preparation of NiO nanoparticles from metal-organic frameworks via a solid-state decomposition route. Inorg Chim Acta. https://doi.org/10.1016/j.ica.2009.04.025

    Article  Google Scholar 

  6. Salavati-Niasari M, Khansari A, Davar F (2009) Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process. Inorganica Chim Acta 362:4937–4942. https://doi.org/10.1016/j.ica.2009.07.023

    Article  CAS  Google Scholar 

  7. Mangamamba T, Ganorkar MC, Swarnabala G (2014) Characterization of complexes synthesized using Schiff base ligands and their screening for toxicity two fungal and one bacterial species on rice pathogens. Int J Inorg Chem. https://doi.org/10.1155/2014/736538

    Article  Google Scholar 

  8. Kadhirvansivasam K, Sivajganesan S, Periyathambi T et al (2016) Synthesis and characterization of Schiff base CoII, NiII and CuII complexes derived from 2-hydroxy-1-naphthaldehyde and 2-picolylamine. Mod Chem Appl. https://doi.org/10.4172/2329-6798.1000197

    Article  Google Scholar 

  9. Karakaya C, Dede B, Cicek E (2016) Novel metal(II) complexes with bidentate Schiff base ligand: synthesis, spectroscopic properties and dye decolorization functions. Acta Phys Pol A 129:208

    Article  CAS  Google Scholar 

  10. Silva M, Freire C, de Castro B, Figueiredo JL (2006) Styrene oxidation by manganese Schiff base complexes in zeolite structures. J Mol Catal A Chem. https://doi.org/10.1016/j.molcata.2006.05.070

    Article  Google Scholar 

  11. Kureshy RI, Khan NH, Abdi SHR et al (2000) Chiral Ni(II) Schiff base complex-catalysed enantioselective epoxidation of prochiral non-functionalised alkenes. J Mol Catal A Chem. https://doi.org/10.1016/S1381-1169(00)00213-2

    Article  Google Scholar 

  12. Judmaier ME, Holzer C, Volpe M, Mösch-Zanetti NC (2012) Molybdenum(VI) dioxo complexes employing schiff base ligands with an intramolecular donor for highly selective olefin epoxidation. Inorg Chem. https://doi.org/10.1021/ic301464w

    Article  PubMed  Google Scholar 

  13. Naghipour A, Fakhri A (2016) Efficient oxidation of sulfides into sulfoxides catalyzed by a chitosan–Schiff base complex of Cu(II) supported on supramagnetic Fe3O4 nanoparticles. Environ Chem Lett. https://doi.org/10.1007/s10311-015-0545-z

    Article  Google Scholar 

  14. Salavati-Niasari M (2005) Synthesis and characterization of host (nanodimensional pores of zeolite- Y)-guest [unsaturated 16-membered octaaza-macrocycle manganese(II), cobalt(II), nickel(II), copper(II), and zinc(II) complexes] nanocomposite materials. Chem Lett 34:1444–1445. https://doi.org/10.1246/cl.2005.1444

    Article  CAS  Google Scholar 

  15. Salavati-Niasari M, Salemi P, Davar F (2005) Oxidation of cyclohexene with tert-butylhydroperoxide and hydrogen peroxide catalysted by Cu(II), Ni(II), Co(II) and Mn(II) complexes of N, N′-bis-(α-methylsalicylidene)-2,2-dimethylpropane-1,3-diamine, supported on alumina. J Mol Catal A Chem 238:215–222. https://doi.org/10.1016/j.molcata.2005.05.026

    Article  CAS  Google Scholar 

  16. Reiss A, Chifiriuc MC, Amzoiu E, Spînu CI (2014) Transition metal(II) complexes with cefotaxime-derived Schiff base: synthesis, characterization, and antimicrobial studies. Bioinorg Chem Appl. https://doi.org/10.1155/2014/926287

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shen S, Chen H, Zhu T et al (2017) Synthesis, characterization and anticancer activities of transition metal complexes with a nicotinohydrazone ligand. Oncol Lett. https://doi.org/10.3892/ol.2017.5857

    Article  PubMed  PubMed Central  Google Scholar 

  18. Prakash A, Adhikari D (2011) Application of Schiff bases and their metal complexes-A review. Int J ChemTech Res 3:1891

    Google Scholar 

  19. Al-Masoudi NA, Aziz NM, Mohammed AT (2009) Synthesis and in vitro anti-hiv activity of some New Schiff base ligands derived from 5-Amino-4-phenyl-4H-1,2,4-triazole-3-thiol and their metal complexes. Phosphorus, Sulfur Silicon. Relat Elem. https://doi.org/10.1080/10426500802591630

    Article  Google Scholar 

  20. Salavati-Niasari M, Shakouri-Arani M, Davar F (2008) Flexible ligand synthesis, characterization and catalytic oxidation of cyclohexane with host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of tetrahydro-salophen) nanocomposite materials. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2008.03.015

    Article  Google Scholar 

  21. Abu Bakar SN, Bahron H, Kassim K (2010) Synthesis and characterization of a novel Schiff base derived from 2,4,6-trimethyl-m-phenylenediamine with o-vanillin and its metal complexes. Int Conf Sci Soc Res. https://doi.org/10.1109/CSSR.2010.5773821

    Article  Google Scholar 

  22. El-Ajaily MM, Abou-Krisha MM, Etorki AM et al (2013) Schiff base derived from phenylenediamine and salicylaldehyde as precursor techniques in coordination chemistry. J Chem Pharm Res 5:933

    CAS  Google Scholar 

  23. Kafi-Ahmadi L, Marjani AP, Pakdaman-Azari M (2018) Synthesis, characterization and antibacterial properties of N,N’-Bis(4-dimethylaminobenzylidene)benzene-1,3-diamine as new schiff base ligand and its binuclear Zn(II), Cd(II) complexes. S Afr J Chem. https://doi.org/10.17159/0379-4350/2018/v71a20

    Article  Google Scholar 

  24. Amedlous A, Amadine O, Essamlali Y et al (2019) Aqueous-phase catalytic hydroxylation of phenol with H2O2 by using a copper incorporated apatite nanocatalyst. RSC Adv 9:14132–14142. https://doi.org/10.1039/c9ra02021g

    Article  CAS  Google Scholar 

  25. Sharma M, Saikia G, Ahmed K et al (2018) Vanadium-based polyoxometalate complex as a new and efficient catalyst for phenol hydroxylation under mild conditions. New J Chem 42:5142–5152. https://doi.org/10.1039/c7nj04433j

    Article  CAS  Google Scholar 

  26. Gupta KC, Sutar AK (2007) Polymer anchored Schiff base complexes of transition metal ions and their catalytic activities in oxidation of phenol. J Mol Catal A Chem 272:64–74. https://doi.org/10.1016/j.molcata.2007.03.025

    Article  CAS  Google Scholar 

  27. Street J (2010) Macrocyclic Cu (II) and Co (II) complexes as catalysts for hydroxylation of phenol with H2O2. Asian J Chem 22:7389–7392

    Google Scholar 

  28. Salavati-Niasari M, Sobhani A (2008) Ship-in-a-bottle synthesis, characterization and catalytic oxidation of cyclohexane by Host (nanopores of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of bis(salicyaldehyde)oxaloyldihydrazone) nanocomposite materials. J Mol Catal A Chem. https://doi.org/10.1016/j.molcata.2008.01.030

    Article  Google Scholar 

  29. Nyquist RA, Peters TL, Budde PB (1978) Infrared and Raman correlations of arylaldehyde azines : asymmetric and symmetric (CN)2 stretching. Spectrochim Acta Part A Mol Spectrosc. https://doi.org/10.1016/0584-8539(78)80046-4

    Article  Google Scholar 

  30. Salavati-Niasari M (2005) Nanoscale microreactor-encapsulation of 18-membered decaaza macrocycle nickel(II) complexes. Inorg Chem Commun 8:174–177. https://doi.org/10.1016/j.inoche.2004.11.004

    Article  CAS  Google Scholar 

  31. Abu-Hussen AAA (2006) Synthesis and spectroscopic studies on ternary bis-Schiff-base complexes having oxygen and/or nitrogen donors. J Coord Chem. https://doi.org/10.1080/00958970500266230

    Article  Google Scholar 

  32. Salavati-Niasari M (2008) Host (nanocage of zeolite-Y)/guest (manganese(II), cobalt(II), nickel(II) and copper(II) complexes of 12-membered macrocyclic Schiff-base ligand derived from thiosemicarbazide and glyoxal) nanocomposite materials: synthesis, characterization and catalytic. J Mol Catal A Chem 283:120–128. https://doi.org/10.1016/j.molcata.2007.12.015

    Article  CAS  Google Scholar 

  33. Gliemann G (1985) A. B. P. Lever: Inorganic Electronic Spectroscopy, Vol. 33 aus: Studies in Physical and Theoretical Chemistry, Elsevier, Amsterdam, Oxford, New York, Tokio 1984. 863 Seiten, Preis: $ 113, 50. Berichte der Bunsengesellschaft für Phys Chemie. https://doi.org/10.1002/bbpc.19850890122

    Article  Google Scholar 

  34. Ibrahim OB, Mohamed MA, Refat MS (2014) Nano sized schiff base complexes with Mn(II), Co(II), Cu(II), Ni(II) and Zn(II) metals : synthesis, spectroscopic and medicinal studies. Can Chem Trans. https://doi.org/10.13179/canchemtrans.2014.02.02.0077

    Article  Google Scholar 

  35. Mendu P, Pragathi J, Anupama B, Kumari CG (2012) Synthesis, spectral characterization, molecular modeling, and antimicrobial studies of Cu(II), Ni(II), Co(II), Mn(II), and Zn(II) complexes of ONO schiff base. E-J Chem. https://doi.org/10.1155/2012/839789

    Article  Google Scholar 

  36. Devi TP, Hemakumar Singh RK (2010) Complexes of nickel (II) with the schiff bases derived from condensation of salicylaldehyde and Bis-Ni (AMUH) 2Cl2. Rasayan J Chem 3:14

    Google Scholar 

  37. Babu K, Amutha P (2014) The new cu(ii) and ni(ii) complexes of schiff bases: synthesis, characterization and antibacterial studies. Der Pharma Chem 6:432

    Google Scholar 

  38. Usharani M, Akila E, Ramachandran S et al (2013) Synthesis, composition, geometry and antibacterial assay of binuclear Schiff base metal complexes derived from benzene-1,4-dicarbaldehyde, 2-hydroxy-benzaldehyde and pyridine-2,6-diamine. Int J Pharm Pharm Sci 5:640

    Google Scholar 

  39. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  40. Mounika K, Pragathi A, Gyanakumari C (2010) Synthesis¸ characterization and biological activity of a schiff base derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid and its transition metal complexes. J Sci Res. https://doi.org/10.3329/jsr.v2i3.4899

    Article  Google Scholar 

  41. Vaghasiya YK, Nair R, Soni M et al (2004) Synthesis, structural determination and antibacterial activity of compounds derived from vanillin and 4-aminoantipyrine. J Serb Chem Soc. https://doi.org/10.2298/JSC0412991V

    Article  Google Scholar 

  42. Abu-Dief AM, Mohamed IMA (2015) A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ J Basic Appl Sci 4:119–133. https://doi.org/10.1016/j.bjbas.2015.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zeng HQ, Jiang Q, Zhu YF et al (2006) Catalysis of metalloporphyrins for selective hydroxylation of phenol by H2O2. J Porphyr Phthalocyanines 10:96–103. https://doi.org/10.1360/crad20060115

    Article  CAS  Google Scholar 

  44. Salavati-Niasari M (2006) Ship-in-a-bottle synthesis, characterization and catalytic oxidation of styrene by host (nanopores of zeolite-Y)/guest ([bis(2-hydroxyanil)acetylacetonato manganese(III)]) nanocomposite materials (HGNM). Microporous Mesoporous Mater 95:248–256. https://doi.org/10.1016/j.micromeso.2006.05.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to Urmia University for funding current project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Kafi-Ahmadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafi-Ahmadi, L., Javanpour, B. Synthesis and characterization of new binuclear Co(II) and Ni(II) complexes derived from N, N′-bis(4-dimethyl-aminobenzylidene)-benzene-1,3-diamine as active catalysts for hydroxylation of phenol and their antibacterial properties. Reac Kinet Mech Cat 130, 935–954 (2020). https://doi.org/10.1007/s11144-020-01808-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01808-6

Keywords

Navigation