Skip to main content

Advertisement

Log in

Caveolin-1 Ablation Imparts Partial Protection Against Inner Retinal Injury in Experimental Glaucoma and Reduces Apoptotic Activation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Retinal ganglion cell degeneration is a characteristic feature of glaucoma, and accordingly, protection of these cells constitutes a major therapeutic objective in the disease. Here, we demonstrate the key influence of caveolin (Cav) in regulating the inner retinal homeostasis in two models of experimentally elevated intraocular pressure (IOP). Two groups of Cav-1−/− and wild-type mice were used in the study. Animals were subjected to experimentally induced chronic and acutely elevated IOP and any changes in their retinal function were assessed by positive scotopic threshold response recordings. TUNEL and cleaved caspase-3 assays were performed to evaluate apoptotic changes in the retina while Brn3a immunostaining was used as a marker to assess and quantify ganglion cell layer (GCL) changes. H&E staining was carried out on retinal sections to evaluate histological differences in retinal laminar structure. Cav-1 ablation partially protected the inner retinal function in both chronic and acute models of elevated IOP. The protective effects of Cav-1 loss were also evident histologically by reduced loss of GCL density in both models. The phenotypic protection in Cav-1−/− glaucoma mice paralleled with increased TrkB phosphorylation and reduced endoplasmic reticulum stress markers and apoptotic activation in the inner retinas. This study corroborated previous findings of enhanced Shp2 phosphorylation in a chronic glaucoma model and established a novel role of Cav-1 in mediating activation of this phosphatase in the inner retina in vivo. Collectively, these findings highlight the critical involvement of Cav-1 regulatory mechanisms in ganglion cells in response to increased IOP, implicating Cav-1 as a potential therapeutic target in glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14:98–112. https://doi.org/10.1038/nrm3512

    Article  CAS  PubMed  Google Scholar 

  2. Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG et al (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138. https://doi.org/10.1074/jbc.M105408200

    Article  CAS  PubMed  Google Scholar 

  3. Parton RG (2003) Caveolae — from ultrastructure to molecular mechanisms. Nat Rev Mol Cell Biol 4:162–167. https://doi.org/10.1038/nrm1017

    Article  CAS  PubMed  Google Scholar 

  4. Gu X, Reagan AM, McClellan ME, Elliott MH (2017) Caveolins and caveolae in ocular physiology and pathophysiology. Prog Retin Eye Res 56:84–106. https://doi.org/10.1016/j.preteyeres.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  5. Glukhova XA, Trizna JA, Proussakova OV, Gogvadze V, Beletsky IP (2018) Impairment of Fas-ligand-caveolin-1 interaction inhibits Fas-ligand translocation to rafts and Fas-ligand-induced cell death article. Cell Death Dis 9:1–12. https://doi.org/10.1038/s41419-017-0109-1

    Article  CAS  Google Scholar 

  6. Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194. https://doi.org/10.1038/nrm2122

    Article  CAS  PubMed  Google Scholar 

  7. Fridolfsson HN, Roth DM, Insel PA, Patel HH (2014) Regulation of intracellular signaling and function by caveolin. FASEB J 28:3823–3831. https://doi.org/10.1096/fj.14-252320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klaassen I, Hughes JM, Vogels IMC, Schalkwijk CG, van Noorden CJF, Schlingemann RO (2009) Altered expression of genes related to blood–retina barrier disruption in streptozotocin-induced diabetes. Exp Eye Res 89:4–15. https://doi.org/10.1016/j.exer.2009.01.006

    Article  CAS  PubMed  Google Scholar 

  9. Hauck SM, Dietter J, Kramer RL, Hofmaier F, Zipplies JK, Amann B, Feuchtinger A, Deeg CA et al (2010) Deciphering membrane-associated molecular processes in target tissue of autoimmune uveitis by label-free quantitative mass spectrometry. Mol Cell Proteomics 9:2292–2305. https://doi.org/10.1074/mcp.M110.001073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cao H, Alston L, Ruschman J, Hegele RA (2008) Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Heal Dis 7(3). https://doi.org/10.1186/1476-511X-7-3

  11. Osborne NN, Casson RJ, Wood JP et al (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147. https://doi.org/10.1016/j.preteyeres.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  12. Berta AI, Boesze-Battaglia K, Magyar A, Szél Á, Kiss AL (2011) Localization of caveolin-1 and c-src in mature and differentiating photoreceptors: raft proteins co-distribute with rhodopsin during development. J Mol Histol 42:523–533. https://doi.org/10.1007/s10735-011-9360-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gu X, Reagan A, Yen A et al (2014) Spatial and temporal localization of caveolin-1 protein in the developing retina. Adv Exp Med Biol 801:15–21. https://doi.org/10.1007/978-1-4614-3209-8_3

    Article  PubMed  PubMed Central  Google Scholar 

  14. Berta AI, Kiss AL, Kemeny-Beke A, Lukáts Á, Szabó A, Szél Á (2007) Different caveolin isoforms in the retina of melanoma malignum affected human eye. Mol Vis 13:881–886

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lei Y, Song M, Wu J, Xing C, Sun X (2016) eNOS activity in CAV1 knockout mouse eyes. Investig Ophthalmol Vis Sci 57:2805–2813. https://doi.org/10.1167/iovs.15-18841

    Article  CAS  Google Scholar 

  16. Thorleifsson G, Walters GB, Hewitt AW, Masson G, Helgason A, DeWan A, Sigurdsson A, Jonasdottir A et al (2010) Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet 42:906–909. https://doi.org/10.1038/ng.661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wiggs JL, Kang JH, Yaspan BL, Mirel DB, Laurie C, Crenshaw A, Brodeur W, Gogarten S et al (2011) Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum Mol Genet 20:4707–4713. https://doi.org/10.1093/hmg/ddr382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Casson RJ, Chidlow G, Wood JPMPM et al (2012) Definition of glaucoma: clinical and experimental concepts. Clin Exp Ophthalmol 40:341–349. https://doi.org/10.1111/j.1442-9071.2012.02773.x

    Article  PubMed  Google Scholar 

  19. Calabrese V, Santoro A, Trovato Salinaro A, Modafferi S, Scuto M, Albouchi F, Monti D et al (2018) Hormetic approaches to the treatment of Parkinson’s disease: perspectives and possibilities. J Neurosci Res 96:1641–1662

    Article  CAS  PubMed  Google Scholar 

  20. Anderson DR (1989) Glaucoma: the damage caused by pressure. XLVI Edward Jackson memorial lecture. Am J Ophthalmol 108:485–495. https://doi.org/10.1016/0002-9394(89)90423-6

    Article  CAS  PubMed  Google Scholar 

  21. Fechtner RD, Weinreb RN (1994) Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol 39:23–42. https://doi.org/10.1016/S0039-6257(05)80042-6

    Article  CAS  PubMed  Google Scholar 

  22. Leske MC, Wu S-Y, Hennis A, Honkanen R, Nemesure B, BESs Study Group (2008) Risk factors for incident open-angle glaucoma: The Barbados Eye Studies. Ophthalmology 115:85–93. https://doi.org/10.1016/J.OPHTHA.2007.03.017

    Article  PubMed  Google Scholar 

  23. Klaassen I, Van Noorden CJFF, Schlingemann RO (2013) Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res 34:19–48. https://doi.org/10.1016/j.preteyeres.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  24. Li X, McClellan ME, Tanito M et al (2012) Loss of caveolin-1 impairs retinal function due to disturbance of subretinal microenvironment. J Biol Chem 287:16424–16434. https://doi.org/10.1074/jbc.M112.353763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gupta VK, You Y, Klistorner A, Graham SL (2012) Shp-2 regulates the TrkB receptor activity in the retinal ganglion cells under glaucomatous stress. Biochim Biophys Acta Mol Basis Dis 1822:1643–1649. https://doi.org/10.1016/j.bbadis.2012.07.016

    Article  CAS  Google Scholar 

  26. Martin KRG, Quigley HA (2004) Gene therapy for optic nerve disease. Eye 18:1049–1055. https://doi.org/10.1038/sj.eye.6701579

    Article  CAS  PubMed  Google Scholar 

  27. Gupta VK, You Y, Gupta VB, Klistorner A, Graham S (2013) TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 14:10122–10142. https://doi.org/10.3390/ijms140510122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abbasi M, Gupta V, Chitranshi N, You Y, Dheer Y, Mirzaei M, Graham SL (2018) Regulation of brain-derived neurotrophic factor and growth factor signaling pathways by tyrosine phosphatase Shp2 in the retina: a brief review. Front Cell Neurosci 12:85. https://doi.org/10.3389/fncel.2018.00085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, di Polo A (2012) The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 31:152–181. https://doi.org/10.1016/j.preteyeres.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  30. Chitranshi N, Dheer Y, Abbasi M, You Y, Graham SL, Gupta V (2018) Glaucoma pathogenesis and neurotrophins: focus on the molecular and genetic basis for therapeutic prospects. Curr Neuropharmacol 16:1018–1035. https://doi.org/10.2174/1570159X16666180419121247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kinkl N, Hageman GS, Sahel JA, Hicks D (2002) Fibroblast growth factor receptor (FGFR) and candidate signaling molecule distribution within rat and human retina. Mol Vis 8:149–160

    PubMed  Google Scholar 

  32. Zhang X, Cai ZG, Simons DL et al (2011) Loss of Shp2-mediated mitogen-activated protein kinase signaling in Muller glial cells results in retinal degeneration. Mol Cell Biol 31:2973–2983. https://doi.org/10.1128/MCB.05054-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gupta V, You Y, Li J, Gupta V, Golzan M, Klistorner A, van den Buuse M, Graham S (2014) BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma. Biochim Biophys Acta 1842:1567–1578. https://doi.org/10.1016/j.bbadis.2014.05.026

    Article  CAS  PubMed  Google Scholar 

  34. Lumayag S, Haldin CE, Corbett NJ, Wahlin KJ, Cowan C, Turturro S, Larsen PE, Kovacs B et al (2013) Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proc Natl Acad Sci 110:E507–E516. https://doi.org/10.1073/pnas.1212655110

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gupta VK, Chitranshi N, Gupta VB, Golzan M, Dheer Y, Wall RV, Georgevsky D, King AE et al (2016) Amyloid β accumulation and inner retinal degenerative changes in Alzheimer’s disease transgenic mouse. Neurosci Lett 623:52–56. https://doi.org/10.1016/j.neulet.2016.04.059

    Article  CAS  PubMed  Google Scholar 

  36. You Y, Gupta VK, Li JC, al-Adawy N, Klistorner A, Graham SL (2014) FTY720 protects retinal ganglion cells in experimental glaucoma. Investig Opthalmology Vis Sci 55:3060. https://doi.org/10.1167/iovs.13-13262

    Article  CAS  Google Scholar 

  37. Dheer Y, Chitranshi N, Gupta VV, Sharma S, Pushpitha K, Abbasi M, Mirzaei M, You Y et al (2019) Retinoid x receptor modulation protects against ER stress response and rescues glaucoma phenotypes in adult mice. Exp Neurol 314:111–125. https://doi.org/10.1016/J.EXPNEUROL.2019.01.015

    Article  CAS  PubMed  Google Scholar 

  38. Basavarajappa DK, Gupta VK, Dighe R, Rajala A, Rajala RVS (2011) Phosphorylated Grb14 Is an endogenous inhibitor of retinal protein tyrosine phosphatase 1B, and light-dependent activation of Src phosphorylates Grb14. Mol Cell Biol 31(19):3975–3987. https://doi.org/10.1128/MCB.05659-11

  39. Gupta VK, Rajala A, Daly RJ, Rajala RVS (2010) Growth factor receptor-bound protein 14: a new modulator of photoreceptor-specific cyclic-nucleotide-gated channel. EMBO Rep 11:861–867. https://doi.org/10.1038/embor.2010.142

  40. Gupta V, Mirzaei M, Gupta VB, Chitranshi N, Dheer Y, Vander Wall R, Abbasi M, You Y et al (2017) Glaucoma is associated with plasmin proteolytic activation mediated through oxidative inactivation of neuroserpin. Sci Rep 7:8412. https://doi.org/10.1038/s41598-017-08688-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Park Y-W, Jeong M-B, Lee ER et al (2013) Acute changes in central corneal thickness according to experimental adjustment of intraocular pressure in normal canine eyes. J Vet Med Sci 75:1479–1483. https://doi.org/10.1292/JVMS.13-0174

    Article  PubMed  PubMed Central  Google Scholar 

  42. He Z, Bui BV, Vingrys AJ (2006) The rate of functional recovery from acute IOP elevation. Investig Ophthalmol Vis Sci 47:4872–4880. https://doi.org/10.1167/iovs.06-0590

    Article  Google Scholar 

  43. Bui BV, Edmunds B, Cioffi GA, Fortune B (2005) The gradient of retinal functional changes during acute intraocular pressure elevation. Investig Ophthalmol Vis Sci 46:202–213. https://doi.org/10.1167/iovs.04-0421

    Article  Google Scholar 

  44. Ma J, Yu W, Wang Y, Cao G, Cai S, Chen X, Yan N, Yuan Y et al (2010) Neuroprotective effects of C-type natriuretic peptide on rat retinal ganglion cells. Investig Opthalmology Vis Sci 51:3544. https://doi.org/10.1167/iovs.09-5049

    Article  Google Scholar 

  45. Nadal-Nicolás FM, Jiménez-López M, Salinas-Navarro M, Sobrado-Calvo P, Alburquerque-Béjar JJ, Vidal-Sanz M, Agudo-Barriuso M (2012) Whole number, distribution and co-expression of Brn3 transcription factors in retinal ganglion cells of adult albino and pigmented rats. PLoS One 7:e49830. https://doi.org/10.1371/journal.pone.0049830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Galindo-Romero C, Avilés-Trigueros M, Jiménez-López M, Valiente-Soriano FJ, Salinas-Navarro M, Nadal-Nicolás F, Villegas-Pérez MP, Vidal-Sanz M et al (2011) Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses. Exp Eye Res 92:377–387. https://doi.org/10.1016/J.EXER.2011.02.008

    Article  CAS  PubMed  Google Scholar 

  47. Nadal-Nicola’s FM, Jime’nez-Lo’pez M, Sobrado-Calvo P, Nieto-López L, Cánovas-Martínez I, Salinas-Navarro M, Vidal-Sanz M, Agudo M (2009) Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naïve and optic nerve–injured retinas. Investig Opthalmology Vis Sci 50:3860. https://doi.org/10.1167/iovs.08-3267

    Article  Google Scholar 

  48. Chitranshi N, Dheer Y, Mirzaei M, Wu Y, Salekdeh GH, Abbasi M, Gupta V, Vander Wall R et al (2019) Loss of Shp2 rescues BDNF/TrkB signaling and contributes to improved retinal ganglion cell neuroprotection. Mol Ther 27:424–441. https://doi.org/10.1016/J.YMTHE.2018.09.019

    Article  CAS  PubMed  Google Scholar 

  49. Bastiani M, Liu L, Hill MM, Jedrychowski MP, Nixon SJ, Lo HP, Abankwa D, Luetterforst R et al (2009) MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J Cell Biol 185:1259–1273. https://doi.org/10.1083/jcb.200903053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu L, Pilch PF (2008) A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J Biol Chem 283:4314–4322. https://doi.org/10.1074/jbc.M707890200

    Article  CAS  PubMed  Google Scholar 

  51. Dheer Y, Chitranshi N, Gupta VV, Abbasi M, Mirzaei M, You Y, Chung R, Graham SL et al (2018) Bexarotene modulates retinoid-X-receptor expression and is protective against neurotoxic endoplasmic reticulum stress response and apoptotic pathway activation. Mol Neurobiol 55:9043–9056. https://doi.org/10.1007/s12035-018-1041-9

    Article  CAS  PubMed  Google Scholar 

  52. Jing G, Wang JJ, Zhang SX (2012) ER stress and apoptosis: a new mechanism for retinal cell death. Exp Diabetes Res 2012:589589–589511. https://doi.org/10.1155/2012/589589

    Article  CAS  PubMed  Google Scholar 

  53. Chitranshi N, Dheer Y, Gupta VVV, Abbasi M, Mirzaei M, You Y, Chung R, Graham SL et al (2017) PTPN11 induces endoplasmic stress and apoptosis in SH-SY5Y cells. Neuroscience 364:175–189. https://doi.org/10.1016/j.neuroscience.2017.09.028

    Article  CAS  PubMed  Google Scholar 

  54. Zhang SX, Sanders E, Fliesler SJ, Wang JJ (2014) Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Exp Eye Res 125:30–40. https://doi.org/10.1016/j.exer.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  55. Shimazawa M, Inokuchi Y, Ito Y, Murata H, Aihara M, Miura M, Araie M, Hara H (2007) Involvement of ER stress in retinal cell death. Mol Vis 13:578–587

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mirzaei M, Pascovici D, Wu JX, et al (2017) TMT one-stop shop: from reliable sample preparation to computational analysis platform. In: Methods in molecular biology (Clifton, N.J.). pp 45–66

  57. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT et al (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368. https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  Google Scholar 

  58. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762. https://doi.org/10.1016/J.FREERADBIOMED.2009.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang W, Wang W, Zhou M, Zhang X (2014) Association of single-nucleotide polymorphism rs4236601 near caveolin 1 and 2 with primary open-angle glaucoma: a meta-analysis. Clin Exp Ophthalmol 42:515–521. https://doi.org/10.1111/ceo.12201

    Article  PubMed  Google Scholar 

  60. Tamm ER (2009) The trabecular meshwork outflow pathways: structural and functional aspects

  61. Aga M, Bradley JM, Wanchu R, Yang YF, Acott TS, Keller KE (2014) Differential effects of caveolin-1 and -2 knockdown on aqueous outflow and altered extracellular matrix turnover in caveolin-silenced trabecular meshwork cells. Investig Ophthalmol Vis Sci 55:5497–5509. https://doi.org/10.1167/iovs.14-14519

    Article  CAS  Google Scholar 

  62. Kuehn MH, Fingert JH, Kwon YH (2005) Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol Clin N Am 18:383–395. https://doi.org/10.1016/j.ohc.2005.04.002

    Article  Google Scholar 

  63. Kim S, Kim K, Heo DW, Kim JS, Park CK, Kim CS, Kang C (2015) Expression-associated polymorphisms of CAV1-CAV2 affect intraocular pressure and high-tension glaucoma risk. Mol Vis 21:548–554

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ozel AB, Moroi SE, Reed DM et al (2014) Genome-wide association study and meta-analysis of intraocular pressure. Hum Genet 133:41–57. https://doi.org/10.1007/s00439-013-1349-5

    Article  CAS  PubMed  Google Scholar 

  65. Chen F, Klein AP, Klein BEK, Lee KE, Truitt B, Klein R, Iyengar SK, Duggal P (2015) Exome array analysis identifies CAV1/CAV2 as a susceptibility locus for intraocular pressure. Invest Ophthalmol Vis Sci 56:544–551. https://doi.org/10.1167/iovs.14-15204

    Article  CAS  PubMed Central  Google Scholar 

  66. Zhang L, Xu J, Liu R, Chen W, Chen Q, Hu W, Zhou L, Zhang R et al (2017) Caveolin-1 protects retinal ganglion cells against acute ocular hypertension injury via modulating microglial phenotypes and distribution and activating AKT pathway. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-10719-x

    Article  CAS  Google Scholar 

  67. Elliott MH, Ashpole NE, Gu X, Herrnberger L, McClellan ME, Griffith GL, Reagan AM, Boyce TM et al (2016) Caveolin-1 modulates intraocular pressure: implications for caveolae mechanoprotection in glaucoma. Sci Rep 6:37127. https://doi.org/10.1038/srep37127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kizhatil K, Chlebowski A, Tolman NG, Freeburg NF, Ryan MM, Shaw NN, Kokini ADM, Marchant JK et al (2016) An in vitro perfusion system to enhance outflow studies in mouse eyes. Investig Opthalmology Vis Sci 57:5207. https://doi.org/10.1167/iovs.16-19481

    Article  CAS  Google Scholar 

  69. Pang J, Dai X, Boye SLSE et al (2011) Long-term retinal function and structure rescue using capsid mutant AAV8 vector in the rd10 mouse, a model of recessive retinitis pigmentosa. Mol Ther 19:234–242. https://doi.org/10.1038/mt.2010.273

    Article  CAS  PubMed  Google Scholar 

  70. Saszik SM, Robson JG, Frishman LJ (2002) The scotopic threshold response of the dark-adapted electroretinogram of the mouse. J Physiol 543:899–916. https://doi.org/10.1113/jphysiol.2002.019703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fortune B, Bui BV, Morrison JC, Johnson EC, Dong J, Cepurna WO, Jia LJ, Barber S et al (2004) Selective ganglion cell functional loss in rats with experimental glaucoma. Investig Ophthalmol Vis Sci 45:1854–1862. https://doi.org/10.1167/iovs.03-1411

    Article  Google Scholar 

  72. Trushina E, Du Charme J, Parisi J, McMurray CT (2006) Neurological abnormalities in caveolin-1 knock out mice. Behav Brain Res 172:24–32. https://doi.org/10.1016/J.BBR.2006.04.024

    Article  CAS  PubMed  Google Scholar 

  73. Hajdú RI, Laurik LK, Szabó K, Dékány B, Almási Z, Énzsöly A, Szabó A, Radovits T et al (2019) Detailed evaluation of possible ganglion cell loss in the retina of Zucker diabetic fatty (ZDF) rats. Sci Rep 9:10463. https://doi.org/10.1038/s41598-019-46879-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ivanova E, Toychiev AH, Yee CW, Sagdullaev BT (2013) Optimized protocol for retinal wholemount preparation for imaging and immunohistochemistry. J Vis Exp:e51018. https://doi.org/10.3791/51018

  75. Patel HH, Murray F, Insel PA (2008) Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 48:359–391. https://doi.org/10.1146/annurev.pharmtox.48.121506.124841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Head BP, Peart JN, Panneerselvam M, Yokoyama T, Pearn ML, Niesman IR, Bonds JA, Schilling JM et al (2010) Loss of caveolin-1 accelerates neurodegeneration and aging. PLoS One 5:e15697. https://doi.org/10.1371/journal.pone.0015697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Harada C, Harada T, Quah H-M et al (2003) Potential role of glial cell line-derived neurotrophic factor receptors in Müller glial cells during light-induced retinal degeneration. Neuroscience 122:229–235. https://doi.org/10.1016/S0306-4522(03)00599-2

    Article  CAS  PubMed  Google Scholar 

  78. Harada C, Guo X, Namekata K, Kimura A, Nakamura K, Tanaka K, Parada LF, Harada T (2011) Glia- and neuron-specific functions of TrkB signalling during retinal degeneration and regeneration. Nat Commun 2:189. https://doi.org/10.1038/ncomms1190

    Article  CAS  PubMed  Google Scholar 

  79. Roesch K, Jadhav AP, Trimarchi JM, Stadler MB, Roska B, Sun BB, Cepko CL (2008) The transcriptome of retinal Müller glial cells. J Comp Neurol 509:225–238. https://doi.org/10.1002/cne.21730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu H, Deng R, Chen X, Wong WC, Chen H, Gao L, Nie Y, Wu W et al (2016) Caveolin-1 is critical for lymphocyte trafficking into central nervous system during experimental autoimmune encephalomyelitis. J Neurosci 36:5193–5199. https://doi.org/10.1523/JNEUROSCI.3734-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Errede M, Girolamo F, Ferrara G, Strippoli M, Morando S, Boldrin V, Rizzi M, Uccelli A et al (2012) Blood-brain barrier alterations in the cerebral cortex in experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 71:840–854. https://doi.org/10.1097/NEN.0b013e31826ac110

    Article  CAS  PubMed  Google Scholar 

  82. Li X, Gu X, Boyce TM, Zheng M, Reagan AM, Qi H, Mandal N, Cohen AW et al (2014) Caveolin-1 increases proinflammatory chemoattractants and blood–retinal barrier breakdown but decreases leukocyte recruitment in inflammation. Investig Ophthalmol Vis Sci 55:6224–6234. https://doi.org/10.1167/iovs.14-14613

    Article  CAS  Google Scholar 

  83. Tian XF, Xia XB, Xu HZ, Xiong SQ, Jiang J (2012) Caveolin-1 expression regulates blood-retinal barrier permeability and retinal neovascularization in oxygen-induced retinopathy. Clin Exp Ophthalmol 40:e58–e66. https://doi.org/10.1111/j.1442-9071.2011.02656.x

    Article  PubMed  Google Scholar 

  84. Gu X, Fliesler SJ, Zhao Y-YY, Stallcup WB, Cohen AW, Elliott MH (2014) Loss of caveolin-1 causes blood-retinal barrier breakdown, venous enlargement, and mural cell alteration. Am J Pathol 184:541–555. https://doi.org/10.1016/j.ajpath.2013.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen Y, Ge S, Lin Z, Liu Z (2018) Expression of eNOS and CAV gene in trabecular meshwork cells and effects on glaucoma pathogenesis. Biomed Res 29:274–279. https://doi.org/10.4066/biomedicalresearch.29-17-3139

    Article  CAS  Google Scholar 

  86. Boscher C, Nabi IR (2012) Caveolin-1: role in cell signaling. In: Advances in experimental medicine and biology. Springer US, pp 29–50

  87. Cao H, Courchesne WE, Mastick CC (2002) A phosphotyrosine-dependent protein interaction screen reveals a role for phosphorylation of caveolin-1 on tyrosine 14: recruitment of C-terminal Src kinase. J Biol Chem 277:8771–8774. https://doi.org/10.1074/jbc.C100661200

    Article  CAS  PubMed  Google Scholar 

  88. Li S, Seitz R, Lisanti MP (1996) Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 271:3863–3868

    Article  CAS  PubMed  Google Scholar 

  89. Lee H, Volonte D, Galbiati F et al (2000) Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 14:1750–1775. https://doi.org/10.1210/mend.14.11.0553

    Article  CAS  PubMed  Google Scholar 

  90. Rusanescu G, Yang W, Bai A, Neel BG, Feig LA (2005) Tyrosine phosphatase SHP-2 is a mediator of activity-dependent neuronal excitotoxicity. EMBO J 24:305–314. https://doi.org/10.1038/sj.emboj.7600522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Carlotta F, Cerri E, Ottino S et al (2016) Changes in BDNF and MAPK signaling pathways in experimental glaucoma. J Clin Exp Ophthalmol 07:1–5. https://doi.org/10.4172/2155-9570.1000530

    Article  Google Scholar 

  92. Moretto G, Xu RY, Walker DG, Kim SU (1994) Co-expression of mRNA for neurotrophic factors in human neurons and glial cells in culture. J Neuropathol Exp Neurol 53:78–85. https://doi.org/10.1097/00005072-199401000-00010

    Article  CAS  PubMed  Google Scholar 

  93. Herzog KH, von Bartheld CS (1998) Contributions of the optic tectum and the retina as sources of brain-derived neurotrophic factor for retinal ganglion cells in the chick embryo. J Neurosci 18:2891–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Oddone F, Roberti G, Micera A, Busanello A, Bonini S, Quaranta L, Agnifili L, Manni G (2017) Exploring serum levels of brain derived neurotrophic factor and nerve growth factor across glaucoma stages. PLoS One 12:e0168565. https://doi.org/10.1371/journal.pone.0168565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Quigley HA, McKinnon SJ, Zack DJ et al (2000) Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Investig Ophthalmol Vis Sci 41:3460–3466

    CAS  Google Scholar 

  96. Pease ME, McKinnon SJ, Quigley HA et al (2000) Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Investig Ophthalmol Vis Sci 41:764–774

    CAS  Google Scholar 

  97. Surgucheva I, Surguchov A (2011) Expression of caveolin in trabecular meshwork cells and its possible implication in pathogenesis of primary open angle glaucoma. Mol Vis 17:2878–2888

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chitranshi N, Dheer Y, Vander Wall R, Gupta V, Abbasi M, Grahama SL, Gupta V (2016) Computational analysis unravels novel destructive single nucleotide polymorphisms in the non-synonymous region of human caveolin gene. Gene Reports 6:142–157. https://doi.org/10.1016/j.genrep.2016.08.008

    Article  Google Scholar 

  99. Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A, Nixon SJ, Walser P, Abankwa D et al (2008) PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132:113–124. https://doi.org/10.1016/j.cell.2007.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nelson BR, Ueki Y, Reardon S, Karl MO, Georgi S, Hartman BH, Lamba DA, Reh TA (2011) Genome-wide analysis of Müller glial differentiation reveals a requirement for notch signaling in postmitotic cells to maintain the glial fate. PLoS One 6:e22817. https://doi.org/10.1371/journal.pone.0022817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Doh SH, Kim JH, Lee KM, Park HY, Park CK (2010) Retinal ganglion cell death induced by endoplasmic reticulum stress in a chronic glaucoma model. Brain Res 1308:158–166. https://doi.org/10.1016/j.brainres.2009.10.025

    Article  CAS  PubMed  Google Scholar 

  102. Tajiri S, Yano S, Morioka M, Kuratsu JI, Mori M, Gotoh T (2006) CHOP is involved in neuronal apoptosis induced by neurotrophic factor deprivation. FEBS Lett 580:3462–3468. https://doi.org/10.1016/j.febslet.2006.05.021

    Article  CAS  PubMed  Google Scholar 

  103. Zeng W, Tang J, Li H, Xu H, Lu H, Peng H, Lin C, Gao R et al (2018) Caveolin-1 deficiency protects pancreatic β cells against palmitate-induced dysfunction and apoptosis. Cell Signal 47:65–78. https://doi.org/10.1016/j.cellsig.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  104. Shajahan AN, Wang A, Decker M, Minshall RD, Liu MC, Clarke R (2007) Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. J Biol Chem 282:5934–5943. https://doi.org/10.1074/jbc.M608857200

    Article  CAS  PubMed  Google Scholar 

  105. Volonté D, Galbiati F, Pestell RG, Lisanti MP (2001) Cellular stress induces the tyrosine phosphorylation of caveolin-1 (Tyr 14 ) via activation of p38 mitogen-activated protein kinase and c-Src kinase. J Biol Chem 276:8094–8103. https://doi.org/10.1074/jbc.M009245200

    Article  PubMed  Google Scholar 

  106. Qu J, Wang D, Grosskreutz CL (2010) Mechanisms of retinal ganglion cell injury and defense in glaucoma. Exp Eye Res 91:48–53. https://doi.org/10.1016/j.exer.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Munemasa Y, Kitaoka Y (2013) Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection. Front Cell Neurosci 6:1–13. https://doi.org/10.3389/fncel.2012.00060

    Article  CAS  Google Scholar 

  108. Inomata Y, Nakamura H, Tanito M, Teratani A, Kawaji T, Kondo N, Yodoi J, Tanihara H (2006) Thioredoxin inhibits NMDA-induced neurotoxicity in the rat retina. J Neurochem 98:372–385. https://doi.org/10.1111/j.1471-4159.2006.03871.x

    Article  CAS  PubMed  Google Scholar 

  109. Cai W, Zhang L, Song Y, Wang B, Zhang B, Cui X, Hu G, Liu Y et al (2012) Small molecule inhibitors of mammalian thioredoxin reductase. Free Radic Biol Med 52:257–265. https://doi.org/10.1016/j.freeradbiomed.2011.10.447

    Article  CAS  PubMed  Google Scholar 

  110. Concetta Scuto M, Mancuso C, Tomasello B, Laura Ontario M, Cavallaro A, Frasca F, Maiolino L, Trovato Salinaro A et al (2019) Curcumin, hormesis and the nervous system. Nutrients 11:2417. https://doi.org/10.3390/nu11102417

    Article  CAS  PubMed Central  Google Scholar 

  111. Trovato A, Siracusa R, Di Paola R et al (2016) Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer’s disease pathogenesis. Immun Ageing 13:23. https://doi.org/10.1186/s12979-016-0078-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Trovato-Salinaro A, Siracusa R, Di Paola R et al (2016) Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: relevance to Alzheimer’s disease pathogenesis. Neurotoxicology 53:350–358. https://doi.org/10.1016/j.neuro.2015.09.012

    Article  CAS  Google Scholar 

  113. Chen B, Tang L (2011) Protective effects of catalase on retinal ischemia/reperfusion injury in rats. Exp Eye Res 93:599–606. https://doi.org/10.1016/j.exer.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  114. Li W, Liu H, Sen ZJ-S et al (2012) Caveolin-1 inhibits expression of antioxidant enzymes through direct interaction with nuclear erythroid 2 p45-related factor-2 (Nrf2). J Biol Chem 287:20922–20930. https://doi.org/10.1074/jbc.M112.352336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Volonte D, Galbiati F (2009) Inhibition of thioredoxin reductase 1 by caveolin 1 promotes stress-induced premature senescence. EMBO Rep 10:1334–1340. https://doi.org/10.1038/embor.2009.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pasquale LR (2016) Vascular and autonomic dysregulation in primary open-angle glaucoma. Curr Opin Ophthalmol 27:94–101. https://doi.org/10.1097/ICU.0000000000000245

    Article  PubMed  PubMed Central  Google Scholar 

  117. Reagan A, Gu X, Hauck SM et al (2016) Retinal degenerative diseases. 854:411–418. https://doi.org/10.1007/978-3-319-17121-0

  118. Sethna S, Chamakkala T, Gu X, Thompson TC, Cao G, Elliott MH, Finnemann SC (2016) Regulation of phagolysosomal digestion by caveolin-1 of the retinal pigment epithelium is essential for vision. J Biol Chem 291:6494–6506. https://doi.org/10.1074/jbc.M115.687004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding bodies and apologise for not being able to cite many other relevant references.

Funding

This work was supported by the National Health and Medical Research Council (NHMRC) of Australia (grants APP1140064 and APP1150083 and fellowship APP1156489 to R.G.P.), Ophthalmic Research Institute of Australia (ORIA) and Macquarie University, NSW, Australia. RGP is supported by the Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vivek K. Gupta or Nitin Chitranshi.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval and Consent to Participate

All the animal experimental work performed in the current study was approved by the Macquarie University Animal Ethics Committee in Australia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1.

Representative immunohistochemical images of the retinal sections stained with Cav-1 antibody. (a,b) WT and Cav 1-/- retinas stained with Cav-1 antibody following chronic and acute IOP injury. Blue-Dapi, Red- Cav-1 staining. n=3 each group, Scale bar= 50μm. (PNG 2181 kb)

High resolution image (TIF 29807 kb)

Fig. S2.

ERG responses from WT and Cav-1-/-mice. (a-c) Representative whole retinal scotopic ERG traces from WT and Cav-1-/- mice at 4, 6 and 12 weeks of age respectively. (d-f) ERG quantification of a- and b-wave amplitudes at all the three time points (n=18 each group). Error bars indicate mean ± SD. (PNG 136 kb)

High resolution image (TIF 526 kb)

Fig. S3.

Effects of increased IOP on TrkB and Shp2 expression in WT and Cav-1-/-mice retinas (a-b) TrkB and (c, d) Shp2 expression changes in WT and Cav-1-/- mice retinas in both chronic and acute models of experimental glaucoma (n=3 per group). (e-g) Western blotting and densitometric analysis of the band intensities for TrkB and Shp2 expression changes in ONH lysates in both models of experimental glaucoma. GAPDH was used an internal control and data quantification carried out within the linear range of detection. n=4 each group. (PNG 2595 kb)

High resolution image (TIF 37668 kb)

(PNG 2328 kb)

High resolution image (TIF 37662 kb)

(PNG 522 kb)

High resolution image (TIF 2439 kb)

Table S1:

The combined set of proteins identified from the retina of Cav-1 KO and WT mice, as well as the list of differentially expressed proteins obtained from a t-test comparison between CAV-1 KO vs WT (p ≤ 0.05 and ratio fold change >1.20). (XLSX 1641 kb)

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, M., Gupta, V.K., Chitranshi, N. et al. Caveolin-1 Ablation Imparts Partial Protection Against Inner Retinal Injury in Experimental Glaucoma and Reduces Apoptotic Activation. Mol Neurobiol 57, 3759–3784 (2020). https://doi.org/10.1007/s12035-020-01948-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01948-9

Keywords

Navigation