Skip to main content
Log in

Small Punch Creep Test: An Overview

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Small punch creep (SPC) test has an important role in the remaining life calculation of in-service components functioning at high temperature and harsh ambience. Since the extraction of conventional full scale specimens from the components in service impairs its integrity, SPC test can be used as an alternative technique. This test method requires very thin disc similar to those needed for transmission electron microscopy (~ 3 mm diameter and 0.5 mm thick). The pre-requisite to employ this test technique is to establish correlations between uniaxial creep and SPC tests in priori. The purpose and scope of this work is to present briefly the principle of SPC testing method in comparison with uniaxial creep test. The differences in terms of specimen geometry and deformation process have been clearly brought out. The correlations developed by several researchers for determining the creep properties from SPC test along with uniaxial creep results for comparison is presented. The contributions by several authors in the direction of numerical simulation and fractography of SPC test is also briefed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. T.G. Le, K.B. Yoon, T.M. Jeong, Degradation and reduction of small punch creep life of service-exposed Super304H steel. J. Mech. Sci. Technol. 33, 5243–5250 (2019)

    Google Scholar 

  2. R.J. Lancaster, S.P. Jeffs, H.W. Illsley, C. Argyrakis, R.C. Hurst, G.J. Baxter, Development of a novel methodology to study fatigue properties using the small punch test. Mater. Sci. Eng. A 748, 21–29 (2019)

    CAS  Google Scholar 

  3. S. Arunkumar, Overview of small punch test. Met. Mater. Int. 26(6), 719–738 (2020)

    Google Scholar 

  4. S. Tettamanti, R. Crudeli, Small punch creep test: a promising methodology for high temperature plant components life evaluation. VTT (Valtion Teknillinen Tutkimuskeskus) Symp. 185, 501–509 (1998)

    Google Scholar 

  5. R.J. Lancaster, S.P. Jeffs, Small Punch Creep (INTECH Open Science, London, 2018), pp. 151–172

    Google Scholar 

  6. J.D. Parker, J.D. James, Disc-bend creep deformation behaviour of 1/2Cr1/2Mo1/4V low alloy steel, in 5th International Conference: Creep and Fracture of Engineering Materials and Structures, Swansea, (CRC Press, Wales, 1993), pp. 651–660

  7. T.H. Hyde, C.J. Hyde, W. Sun, A basis for selecting the most appropriate small specimen creep test type. J. Press. Vessel Technol. 136, 1–6 (2014)

    Google Scholar 

  8. A. Kanaya, J. Kusumoto, M. Nagae, T. Kobayashi, Residual creep life evaluation by small punch creep test. Mech. Eng. Congr. JSME MECJ-05 5(1), 331–332 (2005)

    Google Scholar 

  9. T. Sugimoto, K. Doki, S. Komazaki, S. Misawa, Evaluation of toughness and creep properties of aged main valve CrMoV casting steel by using small punch specimens. Tetsu-to Hagane 91(4), 46–51 (2005)

    Google Scholar 

  10. T. Nakata, S. Komazaki, Y. Kohno, H. Tanigawa, Development of a small punch testing method to evaluate the creep property of high Cr ferritic steel: part II—stress analysis of small punch test specimen by finite element method. Mater. Sci. Eng. A666, 80–87 (2016)

    Google Scholar 

  11. M.L. Saucedo-Muñoz, V. Miranda-Lopez, S. Komazaki, V.M. Lopez-Hirata, Relation of small punch creep test properties with microstructure changes for an ASTM A387 Cr–Mo steel. Mater. Sci. Eng. A 761, 138033 (2019)

    Google Scholar 

  12. F. Dobes, K. Milicka, Comparison of conventional and small punch creep tests of mechanically alloyed Al–C–O alloys. Mater. Charact. 59, 961–964 (2008)

    CAS  Google Scholar 

  13. L.Y. Wang, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, Comparative investigation of small punch creep resistance of Inconel 718 fabricated by selective laser melting. Mater. Sci. Eng. A 745, 31–38 (2019)

    CAS  Google Scholar 

  14. S. Yang, L. Xue, X. Ling, Characterization of low-temperature creep deformation and primary creep stage of TA2 using small punch creep test. Eng. Fract. Mech. 205, 1–9 (2019)

    Google Scholar 

  15. R.V. Prakash, S. Arunkumar, in Evaluation of Damage in Materials due to Fatigue Cycling Through Static and Cyclic Small Punch Testing, Small Specimen Test Techniques, ed. by M.A. Sokolov, E. Lucon (ASTM International, West Conshohocken, 2015), pp. 168–186

    Google Scholar 

  16. S. Arunkumar, R.V. Prakash, Estimation of tensile properties of pressure vessel steel through automated ball indentation and small punch test. Trans. Indian Inst. Met. 69(6), 1245–1256 (2016)

    Google Scholar 

  17. R.V. Prakash, S. Arunkumar, Influence of friction on the response of small punch test. Trans. Indian Inst. Met. 69(2), 617–622 (2016)

    Google Scholar 

  18. R.V. Prakash, S. Arunkumar, Evaluation of Fatigue Data Through Miniature Specimen Test Techniques (American Society of Mechanical Engineers Pressure Vessels and Piping Division (Publication), New York, 2015)

    Google Scholar 

  19. H.K. Al-Abedy, I.A. Jones, W. Sun, Small punch creep property evaluation by finite element of Kocks–Mecking–Estrin model for P91 at elevated temperature. Theoret. Appl. Fract. Mech. 98, 244–254 (2018)

    CAS  Google Scholar 

  20. B. Ule, T. Sustar, F. Dobes, K. Milicka, V. Bicego, S. Tettamanti, K. Maile, C. Schwarzkopf, M.P. Whelan, R.H. Kozlowski, J. Klaput, Small punch test method assessment for the determination of the residual creep life of service exposed components: outcomes from an interlaboratory exercise. Nucl. Eng. Des. 192, 1–11 (1999)

    CAS  Google Scholar 

  21. F. Cortellino, J.P. Rouse, B. Cacciapuoti, W. Sun, T.H. Hyde, Experimental and numerical analysis of initial plasticity in P91 steel small punch creep samples. Exp. Mech. 57, 1193–1212 (2017)

    CAS  Google Scholar 

  22. K. Song, L. Zhao, L. Xu, Y. Han, H. Jing, Experimental and numerical analysis of creep and damage behaviour of P92 steel by small punch tests. Theoret. Appl. Fract. Mech. 100, 181–190 (2019)

    CAS  Google Scholar 

  23. D. Blagoeva, Y.Z. Li, R.C. Hurst, Qualification of P91 welds through small punch creep testing. J. Nucl. Mater. 409(2), 124–130 (2011)

    CAS  Google Scholar 

  24. H. Chen, T.H. Hyde, K.T. Voisey, D.G. McCartney, Application of small punch creep testing to a thermally sprayed CoNiCrAlY bond coat. Mater. Des. 47, 677–686 (2013)

    Google Scholar 

  25. V. Raman, S.V. Raj, An analysis of Harper–Dorn creep based on the specimen size effects. Scr. Metall. 19, 629–634 (1985)

    CAS  Google Scholar 

  26. S.V. Raj, On the grain size dependence of Harper–Dorn creep. Mater. Sci. Eng. 96, 57–64 (1987)

    CAS  Google Scholar 

  27. E. Nes, W. Blum, P. Eisenlohr, Harper–Dorn creep and specimen size. Metall. Mater. Trans. A 33, 305–310 (2002)

    Google Scholar 

  28. T.H. Hyde, W. Sun, J.A. Williams, Requirements for and use of miniature test specimens to provide mechanical and creep properties of materials: a review. Int. Mater. Rev. 52(4), 213–255 (2007)

    CAS  Google Scholar 

  29. P.J.M. Janssen, ThH de Keijser, M.G.D. Geers, An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness. Mater. Sci. Eng. A 419, 238–248 (2006)

    Google Scholar 

  30. R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg, Deformation and fracture mechanics of engineering materials, 5th edn. (Wiley, NewYork, 2013)

    Google Scholar 

  31. M.F. Ashby, D.R.H. Jones, Engineering Materials I—An Introduction to Properties, Applications and Design, 3rd edn. (Elsevier Butterworth-Heinemann, Boston, 2005)

    Google Scholar 

  32. G.E. Dieter, Mechanical Metallurgy (McGraw-Hill Book Company, New York, 1988)

    Google Scholar 

  33. F. Dobes, K. Milicka, P. Kratochvil, Small punch creep in Fe28AlCr0.02Ce alloy. Intermetallics 12, 1397–1401 (2004)

    CAS  Google Scholar 

  34. J.D. Parker, J.D. James, Creep behaviour of miniature disc specimens of low alloy steel, developments in a progressing technology. ASME PVP 279, 167–172 (1994)

    Google Scholar 

  35. S. Komazai, T. Hashida, T. Shoji, K. Suzuki, Development of small punch tests for creep property measurement of tungsten-alloyed 9%Cr ferritic steels. J. Test. Eval. JTEVA 28(4), 249–256 (2000)

    CAS  Google Scholar 

  36. F. Dobes, K. Milicka, Small punch testing in creep conditions. J. Test. Eval. JTEVA 29(1), 31–35 (2001)

    Google Scholar 

  37. M.L. Saucedo-Munoz, S. Komazaki, T. Takahashi, T. Hashida, T. Shoji, Creep property measurement of service-exposed SUS 316 austenitic stainless steel by the small-punch creep-testing technique. J. Mater. Res. 17(8), 1945–1953 (2002)

    CAS  Google Scholar 

  38. X. Ling, Y. Zheng, Y. You, Y. Chen, Creep damage in small punch specimens of type 304 stainless steel. Int. J. Press. Vessels Pip. 84, 304–309 (2007)

    Google Scholar 

  39. K.I. Kobayashi, I. Kajihara, H. Koyama, G.C. Stratford, Deformation and fracture mode during small punch creep tests. J. Solid Mech. Mater. Eng. 4(1), 75–86 (2010)

    Google Scholar 

  40. X. Mao, T. Shoji, H. Takahashi, Characterization of fracture behavior in small punch test by combined recrystallization-etch method and rigid plastic analysis. J. Test. Eval. 15(1), 30–37 (1987)

    Google Scholar 

  41. Nishioka, T., Ohsawa, T., Sawaragi, Y., Uemura, H., Effects of various factors on creep behaviour in low alloy steel by small punch testing methods, in Proceedings of 1st Annual International Conference on SSTT (Small Sample Test Techniques), Metallurgical Journal, vol 63 (2010), pp. 34–38.

  42. Li, Y., Sturm, R., Determination of creep properties from small punch test, in Proceedings of PVP2008, ASME Pressure Vessels and Piping Division Conference, July 27–31, 2008, Chicago, Illinois, USA (2008)

  43. T. Izaki, T. Kobayashi, J. Kusumoto, A. Kanaya, A creep life assessment method for boiler pipes using small punch creep test. Int. J. Press. Vessels Pip. 86, 637–642 (2009)

    CAS  Google Scholar 

  44. F. Dobeš, K. Milička, Application of creep small punch testing in assessment of creep lifetime. Mater. Sci. Eng. A 510–511, 440–443 (2009)

    Google Scholar 

  45. F. Hou, H. Xu, Y. Wang, L. Zhang, Determination of creep property of 1.25Cr0.5Mo pearlitic steels by small punch test. Eng. Fail. Anal. 28, 215–221 (2013)

    CAS  Google Scholar 

  46. L. Zhao, H. Jing, L. Xu, Y. Han, J. Xiu, Y. Qiao, Evaluating of creep property of distinct zones in P92 steel welded joint by small punch creep test. Mater. Des. 47, 677–686 (2013)

    CAS  Google Scholar 

  47. M.D. Mathew, J. Ganesh Kumar, V. Ganesan, Small punch creep studies for optimization of nitrogen content in 316LN SS for enhanced creep resistance. Metall. Mater. Trans. A 45A, 731–737 (2014)

    Google Scholar 

  48. R.J. Lancaster, W.J. Harrison, G. Norton, An analysis of small punch creep behaviour in the γ titanium aluminide Ti–45Al–2Mn–2Nb. Mater. Sci. Eng. A 626, 263–274 (2015)

    CAS  Google Scholar 

  49. S.P. Jeffs, R.J. Lancaster, T.G. Garcia, Creep lifing methodologies applied to a single crystal super alloy by use of small scale test techniques. Mater. Sci. Eng. A 636, 529–535 (2015)

    CAS  Google Scholar 

  50. S.P. Jeffs, R.J. Lancaster, Elevated temperature creep deformation of a single crystal super alloy through the small punch creep method. Mater. Sci. Eng. A 626, 330–337 (2015)

    CAS  Google Scholar 

  51. G.J. Kumar, K. Laha, Small punch creep deformation and rupture behaviour of 316L(N) stainless steel. Mater. Sci. Eng. A 641, 315–322 (2015)

    Google Scholar 

  52. T. Lee, F.A. Ibupoto, J.H. Lee, B.J. Kim, M.K. Kim, A direct methodology for small punch creep test. Exp. Mech. 56, 395–405 (2016)

    CAS  Google Scholar 

  53. C. Wen, T. Xu, K. Guan, Correlation factor study of small punch creep test and its life prediction. Materials 9(796), 1–15 (2016)

    CAS  Google Scholar 

  54. G.S. Deshmukh, M.L. Prasad, D.R. Peshve, G.J. Kumar, M.D. Mathew, G. Amarendra, Creep properties assessment of P92 steel by small punch creep tests. Trans. Indian Inst. Met. 69(4), 907–915 (2016)

    CAS  Google Scholar 

  55. D. Andres, R. Lacalle, J.A. Alvarez, Creep property evaluation of light alloys by means of small punch test: creep master curves. Mater. Des. 96, 122–130 (2016)

    CAS  Google Scholar 

  56. P. Dymacek, Recent developments in small punch testing: applications at elevated temperatures. Theor. Appl. Fract. Mech. 86 A, 25–33 (2016)

    Google Scholar 

  57. S. Yang, Y. Zheng, Y. Duan, X. Ling, Creep characteristics and deformation analysis of service-exposed material using small punch creep test. Eng. Fract. Mech. 195, 242–252 (2018)

    Google Scholar 

  58. J.H. Kim, U. Ro, H. Lee, S.J. Kang, B.H. Lee, M.K. Kim, A direct assessment of creep life based on small punch creep test. Theoret. Appl. Fract. Mech. 104, 102346 (2019)

    CAS  Google Scholar 

  59. P. Dymacek, F. Dobes, Y. Jiraskova, N. Pizurova, M. Friak, Tensile, creep and fracture testing of prospective Fe–Al-based alloys using miniature specimens. Theoret. Appl. Fract. Mech. 99, 18–26 (2019)

    CAS  Google Scholar 

  60. J.P. Rouse, F. Cortellino, W. Sun, T.H. Hyde, J. Shingledecker, Small punch creep testing: review on modelling and data interpretation. Mater. Sci. Technol. 29(11), 1328–1345 (2013)

    CAS  Google Scholar 

  61. M. Bruchhausen, E. Altstadt, T. Austin, P. Dymacek, S. Holmström, S. Jeffs, R. Lacalle, R. Lancaster, K. Matocha, J. Petzova, European standard on small punch testing of metallic materials. Ubiquity Proc. 1(S1), 11 (2018)

    Google Scholar 

  62. D.T. Blagoeva, R.C. Hurst, Application of the CEN (European Committee for Standardization) small punch creep testing code of practice to a representative repair welded P91 pipe. Mater. Sci. Eng. A 510–511, 219–223 (2009)

    Google Scholar 

  63. Y.Z. Li, R. Sturm, Small punch test for weld heat affected zones. Mater. High Temp. 23(3–4), 225–232 (2006)

    Google Scholar 

  64. Y.Z. Li, R. Sturm, Determination of creep properties from small punch test. Proc. ASME Press. Vessels Pip. Conf. 3, 741–752 (2009)

    Google Scholar 

  65. R. Sturm, Y.Z. Li, Small-punch test testing of a weld’s heat affected zones’. Mater. Technol. 40, 49–54 (2006)

    CAS  Google Scholar 

  66. European Committee for Standardization, Small punch test method for metallic materials, in CEN Workshop Agreement, CWA, 15627: 2007 (E) (2007)

  67. F.C. Monkman, N.J. Grant, An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. Proc. ASTM Int. 56, 593–620 (1956)

    Google Scholar 

  68. V.M. Radhakrishnan, The relationship between minimum creep rate and rupture time in Cr–Mo steels. J. Mater. Eng. Perform. 1, 123–128 (1992)

    CAS  Google Scholar 

  69. F. Dobes, K. Milicka, The relation between minimum creep rate and time to fracture. Met. Sci. 10, 382–384 (1976)

    CAS  Google Scholar 

  70. R.W. Evans, B. Wilshire, Creep of metals and alloys (The Institute of Metals, London, 1985), pp. 197–243

    Google Scholar 

  71. R.W. Evans, A constitutive model for the high-temperature creep of particle-hardened alloys based on the θ projection method. Proc. R. Soc. Lond. A 456, 835–868 (2000)

    CAS  Google Scholar 

  72. M. Law, W. Payten, K. Snowden, Modelling creep of pressure vessels with thermal gradients using theta projection data. Int. J. Press. Vessels Pip. 79(12), 847–851 (2002)

    Google Scholar 

  73. K. Maruyama, C. Harada, H. Oikawa, A strain-time equation applicable up to tertiary creep stage. J. Soc. Mater. Sci. Jpn. 34(38), 1289–1295 (1985)

    Google Scholar 

  74. B. Ule, T. Rodic, T. Sustar, Modification of θ projection creep law by introducing mean stress term. Mater. Sci. Technol. 13, 555–559 (1997)

    CAS  Google Scholar 

  75. Y. Zheng, S. Yang, X. Ling, Creep life prediction of small punch creep testing specimens for service-exposed Cr5Mo using theta-projection method. Eng. Fail. Anal. 72, 58–66 (2017)

    CAS  Google Scholar 

  76. B. Gulcimen, P. Hahner, Determination of creep properties of a P91 weldment by small punch testing and a new evaluation approach. Mater. Sci. Eng. A 588, 125–131 (2013)

    Google Scholar 

  77. S. Yang, X. Ling, Y. Zheng, Creep behaviours evaluation of Incoloy800H by small punch creep test. Mater. Sci. Eng. A 685, 1–6 (2017)

    CAS  Google Scholar 

  78. Y.W. Ma, S. Shim, K.B. Yoon, Assessment of power law creep constants of Gr91 steel using small punch creep tests. Fatigue Fract. Eng. Mater. Struct. 32, 951–960 (2009)

    CAS  Google Scholar 

  79. M.T. Whittaker, M. Evans, B. Wilshire, Long-term creep data prediction for type 316H stainless steel. Mater. Sci. Eng. A 552, 145–150 (2012)

    CAS  Google Scholar 

  80. B. Wilshire, A.J. Battenbough, Creep and creep fracture of polycrystalline copper. Mater. Sci. Eng. A 443(1–2), 156–166 (2007)

    Google Scholar 

  81. B. Wilshire, P.J. Scharning, Long-term creep life prediction for a high chromium steel. Scr. Mater. 56(8), 701–704 (2007)

    CAS  Google Scholar 

  82. Holmström, S., Hähner, P., Hurst, R.C., Bruchhausen, M., Fischer, B., Lapetite, J.-M., Small punch creep testing for material characterization and life time prediction, in Materials for Advanced Power Engineering. Juelich, Germany: FZ. Juelich, Germany; (2014) 627–635.

  83. S. Holmström, P. Auerkari, R. Hurst, D. Blagoeva, Using small punch test data to determine creep strain and strength reduction properties for heat affected zones. Mater. Sci. Technol. [Internet] 30(1), 63–66 (2014)

    Google Scholar 

  84. P.C. Zhai, T. Hashida, S. Komazaki, Q.J. Zhang, Numerical analysis for small punch creep tests by finite element methods. J. Test. Eval. 32(4), 298–303 (2004)

    CAS  Google Scholar 

  85. R.W. Evans, M. Evans, Numerical modelling of small disc creep test. Mater. Sci. Technol. 22(10), 1155–1162 (2006)

    CAS  Google Scholar 

  86. P. Dymacek, K. Milicka, Creep small-punch testing and its numerical simulations. Mater. Sci. Eng. A 510–511, 444–449 (2009)

    Google Scholar 

  87. Z. Zhou, Y. Zheng, X. Ling, R. Hu, J. Zhou, A study of influence factors of small punch creep test by experimental investigation and finite element analysis. Mater. Sci. Eng.A 527, 2784–2789 (2010)

    Google Scholar 

  88. T.H. Hyde, M. Stoyanov, W. Sun, C.J. Hyde, On the interpretation of results from small punch creep tests. J. Strain Anal. Eng. Des. 45, 141–164 (2010)

    Google Scholar 

  89. F. Cortellino, W. Sun, T.H. Hyde, J. Shingledecker, The effects of geometrical inaccuracies of the experimental set-up on small punch creep test results. J. Strain Anal. 49(8), 571–582 (2014)

    Google Scholar 

  90. B. Cacciapuoti, W. Sun, D.G. McCartney, A study on the evaluation of contact angle of small punch creep test of ductile materials. Int. J. Press. Vessels Pip. 145, 60–74 (2016)

    CAS  Google Scholar 

  91. A. Oritz-Mariscal, M.L. Saucedo-Munoz, S. Komazaki, Application of small punch creep testing for evaluation of creep properties of as-received and artificially aged 5Cr–0.5Mo steel. Mater. Sci. Eng. A (2018). https://doi.org/10.1016/j.msea.2017.10.060

    Article  Google Scholar 

  92. S. Yang, Y. Zheng, X. Ling, Evaluation of multiaxial creep and damage evolution for small punch creep test considering critical-strain criterion. Eng. Fail. Anal. 91, 99–107 (2018)

    CAS  Google Scholar 

  93. W. Wu, J. Xiaozhe, L. Hao, S. Wei, Determination of creep damage properties from small punch creep tests considering pre-straining effect using an inverse approach. Mech. Mater. 139, 103171 (2019)

    Google Scholar 

  94. L. Zhao, K. Song, L. Xu, Y. Han, H. Jing, Y. Zhang, H. Li, Determination of creep properties of an advanced Fe–Cr–Ni alloy using small punch creep test with a modified creep strain model. Theoret. Appl. Fract. Mech. 104, 102324 (2019)

    CAS  Google Scholar 

  95. L. Zhao, K. Song, L. Xu, Y. Han, H. Jing, H. Li, Y. Zhang, Investigating creep rupture and damage behaviour of 41Fe–255Cr–23Ni alloy small punch creep specimens using a novel microstructure meshing approach. Mater. Sci. Eng. A 766, 138370 (2019)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Arunkumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunkumar, S. Small Punch Creep Test: An Overview. Met. Mater. Int. 27, 1897–1914 (2021). https://doi.org/10.1007/s12540-020-00783-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00783-w

Keywords

Navigation