Skip to main content
Log in

Thermally induced stress in a nanoconfined gas medium

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations of static argon gas at three different levels of rarefaction are conducted for a channel of 5.4 nm height to investigate the simultaneous effect of the wall force field and the gas temperature on the stress distribution along the channel height. Using the interactive thermal wall model, different temperatures are applied on the channel walls to be able to investigate the effect of the wall temperature and the induced heat flux through the gas medium on the stress distribution. Considering the monoatomic neutral argon gas, the kinetic, particle-particle virial, and surface-particle virial are considered for computing the stress distribution along the channel height. The normal stress components in the bulk gas region are distributed isotropically regardless of the gas density, temperature, and induced heat flux through the domain, while an anisotropy is observed due to the presence of the surface-particle virial. As the gas becomes hotter, the velocity of the gas atoms increases, and thus the kinetic stress component also increases. Besides, the gas density in the wall force field region reduces which eventually attenuates the surface-particle and particle-particle virial stress within 1 nm from each wall. This effect was also observed as the gas becomes cooler. It is shown that the combination of gas density, wall temperature, and induced heat flux are the main parameters which determine the distribution of stress within the gas medium especially in the wall force field region where repulsive and attractive interactions exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen Z, Wong C, Lubner S et al (2014) A photon thermal diode. Nat Commun 5:5446

    Article  Google Scholar 

  2. Li N, Ren J, Wang L et al (2012) Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev Mod Phys 84:1045–1066. https://doi.org/10.1103/RevModPhys.84.1045

    Article  Google Scholar 

  3. Wang L, Li B (2007) Thermal logic gates: computation with phonons. Phys Rev Lett 99:177208. https://doi.org/10.1103/PhysRevLett.99.177208

    Article  CAS  PubMed  Google Scholar 

  4. Casati G (2007) Device physics: the heat is on - and off. Nat Nanotechnol 2:23–24. https://doi.org/10.1038/nnano.2006.191

    Article  CAS  PubMed  Google Scholar 

  5. Roberts NA, Walker DG (2011) Computational study of thermal rectification from nanostructured interfaces. J Heat Transf 133:092401. https://doi.org/10.1115/1.4003960

    Article  Google Scholar 

  6. Kuo DMT, Chang YC (2010) Thermoelectric and thermal rectification properties of quantum dot junctions. Phys Rev B - Condens Matter Mater Phys 81:205321. https://doi.org/10.1103/PhysRevB.81.205321

    Article  CAS  Google Scholar 

  7. Varga S, Oliveira AC, Afonso CF (2002) Characterisation of thermal diode panels for use in the cooling season in buildings. Energy Build 34:227–235. https://doi.org/10.1016/S0378-7788(01)00090-1

    Article  Google Scholar 

  8. Giannakopoulos AE, Sofos F, Karakasidis TE, Liakopoulos A (2012) Unified description of size effects of transport properties of liquids flowing in nanochannels. Int J Heat Mass Transf 55:5087–5092. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.008

    Article  CAS  Google Scholar 

  9. Chen Y, Zhang C (2014) Role of surface roughness on thermal conductance at liquid–solid interfaces. Int J Heat Mass Transf 78:624–629. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2014.07.005

    Article  Google Scholar 

  10. Rajabpour A, Seif R, Arabha S et al (2019) Thermal transport at a nanoparticle-water interface: a molecular dynamics and continuum modeling study. J Chem Phys 150:114701. https://doi.org/10.1063/1.5084234

    Article  CAS  PubMed  Google Scholar 

  11. Heyhat MM, Rajabpour A, Abbasi M, Arabha S (2018) Importance of nanolayer formation in nanofluid properties: equilibrium molecular dynamic simulations for Ag-water nanofluid. J Mol Liq 264:699–705. https://doi.org/10.1016/j.molliq.2018.05.122

    Article  CAS  Google Scholar 

  12. Merabia S, Shenogin S, Joly L et al (2009) Heat transfer from nanoparticles: a corresponding state analysis. Proc Natl Acad Sci 106:15113–15118. https://doi.org/10.1073/pnas.0901372106

    Article  PubMed  Google Scholar 

  13. Merabia S, Keblinski P, Joly L et al (2009) Critical heat flux around strongly heated nanoparticles. Phys Rev E - Stat Nonlinear, Soft Matter Phys 79:021404. https://doi.org/10.1103/PhysRevE.79.021404

    Article  CAS  Google Scholar 

  14. Fu L, Merabia S, Joly L (2018) Understanding fast and robust thermo-osmotic flows through carbon nanotube membranes: thermodynamics meets hydrodynamics. J Phys Chem Lett 9:2086–2092. https://doi.org/10.1021/acs.jpclett.8b00703

    Article  CAS  PubMed  Google Scholar 

  15. Pham AT, Barisik M, Kim B (2014) Molecular dynamics simulations of Kapitza length for argon-silicon and water-silicon interfaces. Int J Precis Eng Manuf 15:323–329. https://doi.org/10.1007/s12541-014-0341-x

    Article  Google Scholar 

  16. Faraji F, Rajabpour A (2017) Fluid heating in a nano-scale Poiseuille flow: a non-equilibrium molecular dynamics study. Curr Appl Phys 17:1646–1654. https://doi.org/10.1016/j.cap.2017.09.008

    Article  Google Scholar 

  17. Fu T, Wang Q (2018) Effect of nanostructure on heat transfer between fluid and copper plate: a molecular dynamics simulation study. Mol Simul:1–6. https://doi.org/10.1080/08927022.2018.1431836

  18. Zhang L, Xu J, Chen Q, Wang S (2018) Switchable heat transfer in nano Janus-interface-system. Int J Heat Mass Transf 127:761–771. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.090

    Article  CAS  Google Scholar 

  19. Hens A, Agarwal R, Biswas G (2014) Nanoscale study of boiling and evaporation in a liquid Ar film on a Pt heater using molecular dynamics simulation. Int J Heat Mass Transf 71:303–312. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2013.12.032

    Article  CAS  Google Scholar 

  20. Ghorbanian J, Beskok A (2016) Scale effects in nano-channel liquid flows. Microfluid Nanofluid 20:121. https://doi.org/10.1007/s10404-016-1790-6

    Article  CAS  Google Scholar 

  21. Ueki Y, Miyazaki Y, Shibahara M, Ohara T (2018) Molecular dynamics study of thermal resistance of solid-liquid interface in contact with single layer of nanoparticles. Int J Heat Mass Transf 120:608–623. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.061

    Article  CAS  Google Scholar 

  22. Hartkamp R, Ghosh A, Weinhart T, Luding S (2012) A study of the anisotropy of stress in a fluid confined in a nanochannel. J Chem Phys 137:044711. https://doi.org/10.1063/1.4737927

    Article  CAS  PubMed  Google Scholar 

  23. Barisik M, Kim B, Beskok A (2010) Smart wall model for molecular dynamics simulations of nanoscale gas flows. Commun Comput Phys 7:977–993. https://doi.org/10.4208/cicp.2009.09.118

    Article  Google Scholar 

  24. Rabani R, Heidarinejad G, Harting J, Shirani E (2018) Interplay of confinement and density on the heat transfer characteristics of nanoscale-confined gas. Int J Heat Mass Transf 126:331–341. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.028

    Article  CAS  Google Scholar 

  25. Rabani R, Heidarinejad G, Harting J, Shirani E (2019) Effect of temperature difference between channel walls on the heat transfer characteristics of nanoscale-confined gas. Int J Therm Sci 137:13–25

    Article  CAS  Google Scholar 

  26. Rabani R, Heidarinejad G, Harting J, Shirani E (2020) Heat conduction characteristic of rarefied gas in nanochannel. J Appl Fluid Mech 13:1–13. https://doi.org/10.29252/jafm.13.01.30075

    Article  Google Scholar 

  27. Bao F, Mao Z, Qiu L (2014) Study of gaseous velocity slip in nano-channel using molecular dynamics simulation. Int J Numer Methods Heat Fluid Flow 24:1338–1347. https://doi.org/10.1108/HFF-04-2013-0145

    Article  Google Scholar 

  28. Cieplak M, Koplik J, Bavanar JR (2000) Molecular dynamics of flows in the Knudsen regime. Phys A Stat Mech Appl 287:153–160. https://doi.org/10.1016/S0378-4371(00)00353-8

    Article  CAS  Google Scholar 

  29. Bao F, Huang Y, Zhang Y, Lin J (2015) Investigation of pressure-driven gas flows in nanoscale channels using molecular dynamics simulation. Microfluid Nanofluid 18:1075–1084. https://doi.org/10.1007/s10404-014-1498-4

    Article  Google Scholar 

  30. Bao F, Huang Y, Qiu L, Lin J (2015) Applicability of molecular dynamics method to the pressure-driven gas flow in finite length nano-scale slit pores. Mol Phys 113:561–569. https://doi.org/10.1080/00268976.2014.960495

    Article  CAS  Google Scholar 

  31. Zhou W-J, Yu Z-Q, Li Z-Z et al (2017) Atomistic-continuum hybrid simulations for compressible gas flow in a parallel nanochannel. Int J Heat Mass Transf 108:2100–2106. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2017.01.042

    Article  CAS  Google Scholar 

  32. Kammara KK, Malaikannan G, Kumar R (2016) Molecular dynamics study of gas–surface interactions in a force-driven flow of argon through a rectangular nanochannel. Nanoscale Microscale Thermophys Eng 20:121–136. https://doi.org/10.1080/15567265.2016.1215364

    Article  CAS  Google Scholar 

  33. Yasuoka H, Kaneda M, Suga K (2016) Wall-adjacent velocity profiles of nano-scale gas flows. J Stat Phys 165:907–919. https://doi.org/10.1007/s10955-016-1662-1

    Article  CAS  Google Scholar 

  34. Barisik M, Beskok A, Levin DA, et al (2011) MD simulations of nano-scale gas flows: a case study of Couette flow at Kn= 10. In: AIP Conference Proceedings-American Institute of Physics. p 707

  35. Barisik M, Beskok A (2011) Molecular dynamics simulations of shear-driven gas flows in nano-channels. Microfluid Nanofluid 11:611–622. https://doi.org/10.1007/s10404-011-0827-0

    Article  CAS  Google Scholar 

  36. Barisik M, Beskok A (2011) Equilibrium molecular dynamics studies on nanoscale-confined fluids. Microfluid Nanofluid 11:269–282. https://doi.org/10.1007/s10404-011-0794-5

    Article  CAS  Google Scholar 

  37. Barisik M, Beskok A (2012) Surface-gas interaction effects on nanoscale gas flows. Microfluid Nanofluid 13:789–798. https://doi.org/10.1007/s10404-012-1000-0

    Article  CAS  Google Scholar 

  38. Barisik M, Beskok A (2014) Scale effects in gas nano flows. Phys Fluids 26:052003. https://doi.org/10.1063/1.4874678

    Article  CAS  Google Scholar 

  39. Barisik M, Beskok A (2015) Molecular free paths in nanoscale gas flows. Microfluid Nanofluid 18:1365–1371. https://doi.org/10.1007/s10404-014-1535-3

    Article  CAS  Google Scholar 

  40. Barisik M, Beskok A (2016) “Law of the nano-wall” in nano-channel gas flows. Microfluid Nanofluid 20:1–9. https://doi.org/10.1007/s10404-016-1713-6

    Article  CAS  Google Scholar 

  41. Irving JH, Kirkwood JG (1950) The statistical mechanical theory of transport processes. IV. The Equations of Hydrodynamics. J Chem Phys 18:817–829. https://doi.org/10.1063/1.1747782

    Article  CAS  Google Scholar 

  42. Kim JH, Frijns AJH, Nedea SV, van Steenhoven AA (2012) Pressure calculations in Nanochannel gas flows. J Phys Conf Ser 362:012020. https://doi.org/10.1088/1742-6596/362/1/012020

    Article  CAS  Google Scholar 

  43. Qian L, Tu C, Bao F, Zhang Y (2016) Virtual-Wall model for molecular dynamics simulation. Molecules 21:1678. https://doi.org/10.3390/molecules21121678

    Article  CAS  PubMed Central  Google Scholar 

  44. Kim BH, Beskok A, Cagin T (2008) Thermal interactions in nanoscale fluid flow: molecular dynamics simulations with solid-liquid interfaces. Microfluid Nanofluid 5:551–559. https://doi.org/10.1007/s10404-008-0267-7

    Article  Google Scholar 

  45. Ghassem H, Reza R, Ebrahim S (2017) The effect of wall force field on temperature distribution in nanochannel contains Lennard-Jones fluid by molecular dynamic simulation. Modares Mech Eng 17:23–31

    Google Scholar 

  46. Rabani R, Heidarinejad G, Harting J, Shirani E (2020) Effect of wall stiffness, mass and potential interaction strength on heat transfer characteristics of nanoscale-confined gas. Int J Heat Mass Transf 147:118929. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118929

    Article  CAS  Google Scholar 

  47. Rabani R, Heidarinejad G, Harting J, Shirani E (2020) Interplay of wall force field and wall physical characteristics on interfacial phenomena of a nano-confined gas medium. Int J Therm Sci 153:106394. https://doi.org/10.1016/j.ijthermalsci.2020.106394

    Article  Google Scholar 

  48. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  49. London F (1937) The general theory of molecular forces. Trans Faraday Soc 33:8–26. https://doi.org/10.1039/tf937330008b

    Article  CAS  Google Scholar 

  50. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press

  51. Allen MP, Tildesley DJ, Banavar JR (1989) Computer simulation of liquids. Phys Today 42:105–106. https://doi.org/10.1063/1.2810937

    Article  Google Scholar 

  52. Surblys D, Matsubara H, Kikugawa G, Ohara T (2019) Application of atomic stress to compute heat flux via molecular dynamics for systems with many-body interactions. Phys Rev E 99. https://doi.org/10.1103/PhysRevE.99.051301

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Rabani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabani, R., Heidarinejad, G., Harting, J. et al. Thermally induced stress in a nanoconfined gas medium. J Mol Model 26, 180 (2020). https://doi.org/10.1007/s00894-020-04443-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04443-z

Keywords

Navigation