Skip to main content
Log in

Development of Lee’s exact method for Gauss–Krüger projection

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Lee’s exact method was developed to enable the Gauss–Krüger (GK) projection to be implemented without iterative procedures via the expansion of the intermediate mapping (Thompson projection) into series approximations in terms of isothermal coordinates \(\left( \psi , \lambda \right) \) for the forward mapping and GK coordinates \(\left( x, y \right) \) for the reverse mapping. The straightforward procedures expressed by new formulas for both forward and reverse mapping of the GK projection were composed by three sequential steps which essentially reveal the mapping procedures and intrinsic properties of the GK projection: The first step of deriving the isothermal coordinates \(\left( \psi , \lambda \right) \) from the geodetic coordinates \(\left( \varphi , \lambda \right) \) specifies a conformal mapping (i.e., the Normal Mercator projection) of the Earth ellipsoid surface into the Euclidean plane excluding the South and North poles, and the subsequent two steps allow the GK projection to be expressed analytically via the elliptic functions and integrals. Based on the three-step procedure, the conformality and singularities over the entire ellipsoid of the Normal Mercator, Thompson and GK projections were analyzed and the fundamental domains of them were determined. With respect to the precision and efficiency, it was verified that the new algorithm and the complex latitude method had equivalent precision levels for the same orders of the third flatting n with the Krüger-n series from \(n^2\) to \(n^{12}\) but slower about 0.19 to \({0.21}\,\upmu \hbox {s}\) than the Krüger-n series for a GK coordinates calculating. However, the new formulas provide series approximations for the forward mapping of the Thompson projection and projective transformations for the Normal Mercator, Thompson and GK projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

The programs and source codes generated during the current study are available in the electronic supplement and released under the X/MIT open source license (details see https://opensource.org/licenses/MIT). We sadly announce that Prof. J.S. Ning passed away on 15 March 2020 of a chronic disease at the age of 88. He was a distinguished scientist of China and we deeply mourn him.

References

Download references

Acknowledgements

We would like to express our gratitude to the anonymous reviewers, the responsible editor and the Editor-in-Chief, Jürgen Kusche, for their insightful comments and suggestions, which greatly helped to improve our manuscript. We thank Dr. Yi Liu (Institute of Geographic Sciences and Natural Resources, CAS) for the helpful discussions. This study was supported by the National Natural Science Foundation of China (Grant Nos. 41631072, 41504031, 41721003, 41574007 and 41429401), the Discipline Innovative Engineering Plan of Modern Geodesy and Geodynamics (Grant No. B17033) and the DAAD Thematic Network Project (Grant No. 57173947).

Author information

Authors and Affiliations

Authors

Contributions

W.B. Shen, J.C. Guo and J.S. Ning designed research; J.C. Guo performed research and wrote the paper; W.B. Shen and J.S. Ning supervised the research and also contributed to the algorithm implementation and result interpretation.

Corresponding author

Correspondence to Wen-Bin Shen.

Appendix: Lists of series’ coefficients

Appendix: Lists of series’ coefficients

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} a_1= 1 \\ a_2=\frac{4 n \left( 3+2 n+3 n^2\right) }{3 (1+n)^4} \\ a_3= \frac{64 n^2 \left( 1+n+n^2\right) \left( 5+2 n+5 n^2\right) }{15 (1+n)^8} \\ a_4= \frac{256 n^3 \left( 1+n+n^2\right) }{315 (1+n)^{12}} \left( 147+172 n+322 n^2 +172 n^3+147 n^4\right) \\ a_5=\frac{1024 n^4 \left( 1+n+n^2\right) }{2835 (1+n)^{16}}\left( 1881+3690 n+7511 n^2 +7436 n^3+7511 n^4+3690 n^5+1881 n^6\right) \\ a_6= \frac{4096 n^5 \left( 1+n+n^2\right) }{155925 (1+n)^{20}} \left( 148005+409468 n +954756 n^2+1316484 n^3+1600174 n^4 \right. \\ \qquad \qquad \qquad \qquad \qquad \left. +1316484 n^5+954756 n^6+409468 n^7+148005 n^8\right) \\ \end{array}\right. } \end{aligned} \end{aligned}$$
(66)
$$\begin{aligned}&\begin{aligned} {\left\{ \begin{array}{ll} {a}'_1= 1 \\ {a}'_2= -\frac{4 n \left( 3+2 n+3 n^2\right) }{3 (1-n)^4} \\ {a}'_3= \frac{16 n^2 \left( 25+32 n+62 n^2+32 n^3+25 n^4 \right) }{15 (1-n)^8} \\ {a}'_4= - \frac{256 n^3 }{315 (1-n)^{12}} \left( 252+473 n+1096 n^2 +1030 n^3+1096 n^4+473 n^5+252 n^6 \right) \\ {a}'_5=\frac{256 n^4 }{2835 (1-n)^{16}}\left( 18621+45936 n+122524 n^2 +160976 n^3+212174 n^4+160976 n^5 \right. \\ \qquad \qquad \qquad \qquad \qquad \left. +122524 n^6+45936 n^7+18621 n^8 \right) \\ {a}'_6= - \frac{1024 n^5 }{155925 (1-n)^{20}} \left( 2185425+6672418 n+20019565 n^2 ~ +33138104 n^3+51507906 n^4 \right. \\ ~~~~~~~~~~~~~~~~~ \left. +53289548 n^5+51507906 n^6 +33138104 n^7+20019565 n^8+6672418 n^9+2185425 n^{10} \right) \\ \end{array}\right. } \end{aligned} \end{aligned}$$
(67)
$$\begin{aligned}&\begin{aligned} {\left\{ \begin{array}{ll} b_1= 3 n-\frac{4 n^2}{3}-\frac{47 n^3}{24}+\frac{293 n^4}{90}-\frac{241 n^5}{720} -\frac{72029 n^6}{18900}+\frac{7021093 n^7}{1612800}+\frac{5196481 n^8}{25401600}-\cdots \\ b_2= \frac{73 n^2}{12}-\frac{76 n^3}{15}-\frac{3427 n^4}{360}+\frac{6278 n^5}{315} -\frac{81547 n^6}{69120}-\frac{5357593 n^7}{151200}+\frac{348016423 n^8}{8709120} +\cdots \\ b_3= \frac{531 n^3}{40}-\frac{1121 n^4}{70}-\frac{144841 n^5}{4480} \qquad ~+\frac{365357 n^6}{4320}-\frac{3427253 n^7}{537600}-\frac{524932337 n^8}{2661120}+\cdots \\ b_4= \frac{603793 n^4}{20160}-\frac{14843 n^5}{315}-\frac{12470017 n^6}{129600} +\frac{16018067 n^7}{51975}-\frac{38515416901 n^8}{958003200} -\cdots \\ b_5= \frac{555379 n^5}{8064}-\frac{3803159 n^6}{28512} -\frac{568876163 n^7}{2128896}+\frac{64225156139 n^8}{62270208}-\cdots \\ b_6= \frac{4266870481 n^6}{26611200}-\frac{885241627 n^7}{2402400} -\frac{3440458049657 n^8}{4843238400}+\cdots \\ b_7= \frac{37217872147 n^7}{98841600}-\frac{44517464099 n^8}{44478720}- \cdots \\ b_8= \frac{41377942693441 n^8}{46495088640}-\cdots \end{array}\right. } \end{aligned} \end{aligned}$$
(68)
$$\begin{aligned}&\begin{aligned} {\left\{ \begin{array}{ll} c_1= 1-3 n+\frac{89 n^2}{12}-\frac{983 n^3}{60}+\frac{669097 n^4}{20160}-\frac{85205 n^5}{1344} +\frac{4613096261 n^6}{39916800}-\frac{7023747629 n^7}{34594560}+\frac{241216793515063 n^8}{697426329600}-\cdots \\ c_2= 6 n-\frac{154 n^2}{3}+\frac{8267 n^3}{30}-\frac{146663 n^4}{126}+\frac{14143481 n^5}{3360} -\frac{67912497689 n^6}{4989600} +\frac{3492863985997 n^7}{86486400}-\frac{609515305090687 n^8}{5448643200}+\cdots \\ c_3= \frac{146 n^2}{3}-\frac{10166 n^3}{15}+\frac{1151753 n^4}{210}-\frac{21027229 n^5}{630} +\frac{24032441159 n^6}{142560} -\frac{1786716407701 n^7}{2402400}+\frac{153372726415967 n^8}{51891840}-\cdots \\ c_4= \frac{2124 n^3}{5}-\frac{2576596 n^4}{315}+\frac{9257249 n^5}{105}-\frac{3103882183 n^6}{4455} +\frac{9696749750707 n^7}{2162160}-\frac{96707303981543 n^8}{3891888}+ \cdots \\ c_5= \frac{1207586 n^4}{315}-\frac{9889618 n^5}{105}+\frac{15800798789 n^6}{12474} -\frac{3320773490077 n^7}{270270}+\frac{3730389142464631 n^8}{38918880}- \cdots \\ c_6= \frac{2221516 n^5}{63}-\frac{164256182516 n^6}{155925}+\frac{36404672059 n^7}{2145} -\frac{131726046437189 n^8}{675675}+\cdots \\ c_7= \frac{17067481924 n^6}{51975}-\frac{7804602117964 n^7}{675675} +\frac{1318332827886247 n^8}{6081075}- \cdots \\ c_8=\frac{297742977176 n^7}{96525}-\frac{81759539103832 n^8}{654885}+\cdots \\ c_9= \frac{82755885386882 n^8}{2837835}-\cdots ~~. \end{array}\right. } \end{aligned} \end{aligned}$$
(69)
$$\begin{aligned}&\begin{aligned} {\left\{ \begin{array}{ll} d_1= 3 n-\frac{89 n^2 }{12}+\frac{983 n^3}{60}-\frac{669097 n^4}{20160}+\frac{85205 n^5}{1344} -\frac{4613096261 n^6}{39916800}+\frac{7023747629 n^7}{34594560}-\frac{241216793515063 n^8}{697426329600}+\cdots \\ d_2= \frac{73 n^2}{6}-\frac{1214 n^3}{15}+\frac{1229327 n^4}{3360}-\frac{857341 n^5}{630} +\frac{847736173 n^6}{190080}-\frac{13721211301 n^7}{1029600}+\frac{123072262642187 n^8}{3321077760}-\cdots \\ d_3= \frac{354 n^3}{5}-\frac{225179 n^4}{280}+\frac{1173191 n^5}{210}-\frac{134307704 n^6}{4455} +\frac{199038212267 n^7}{1441440}-\frac{51797585778073 n^8}{92252160}+\cdots \\ d_4= \frac{603793 n^4}{1260}-\frac{819668 n^5}{105}+\frac{2298035959 n^6}{31185} -\frac{70583980717 n^7}{135135}+\frac{3821533260867121 n^8}{1245404160}- \cdots \\ d_5= \frac{1110758 n^5}{315}-\frac{173808307 n^6}{2310}+\frac{16232813323 n^7}{18018} -\frac{137037324802363 n^8}{17297280}+ \cdots \\ d_6= \frac{4266870481 n^6}{155925}-\frac{32607070924 n^7}{45045} +\frac{454957622901911 n^8}{43243200}- \cdots \\ d_7=\frac{148871488588 n^7}{675675}-\frac{12320936262697 n^8}{1769040}+\cdots \\ d_8= \frac{41377942693441 n^8}{22702680}- \cdots \end{array}\right. } \end{aligned} \end{aligned}$$
(70)
$$\begin{aligned}&\begin{aligned} {\left\{ \begin{array}{ll} f_1= \frac{3 n}{2}-\frac{2 n^2}{3}-\frac{47 n^3}{48}+\frac{293 n^4}{180}-\frac{241 n^5}{1440} -\frac{72029 n^6}{37800}+\frac{7021093 n^7}{3225600}+\frac{5196481 n^8}{50803200}-\cdots \\ f_2= \frac{73 n^2}{48}-\frac{19 n^3}{15}-\frac{3427 n^4}{1440}+\frac{3139 n^5}{630}-\frac{81547 n^6}{276480} -\frac{5357593 n^7}{604800}+\frac{348016423 n^8}{34836480}+\cdots \\ f_3= \frac{177 n^3}{80}-\frac{1121 n^4}{420}-\frac{144841 n^5}{26880}+\frac{365357 n^6}{25920} -\frac{3427253 n^7}{3225600}-\frac{524932337 n^8}{15966720}+\cdots \\ f_4= \frac{603793 n^4}{161280}-\frac{14843 n^5}{2520}-\frac{12470017 n^6}{1036800} +\frac{16018067 n^7}{415800}-\frac{38515416901 n^8}{7664025600}- \cdots \\ f_5= \frac{555379 n^5}{80640}-\frac{3803159 n^6}{285120}-\frac{568876163 n^7}{21288960} +\frac{64225156139 n^8}{622702080}- \cdots \\ f_6= \frac{4266870481 n^6}{319334400}-\frac{885241627 n^7}{28828800} -\frac{3440458049657 n^8}{58118860800}+\cdots \\ f_7=\frac{37217872147 n^7}{1383782400}-\frac{44517464099 n^8}{622702080}-\cdots \\ f_8= \frac{41377942693441 n^8}{743921418240}-\cdots \end{array}\right. } \end{aligned} \end{aligned}$$
(71)
$$\begin{aligned}&\begin{aligned} {\left\{ \begin{array}{ll} g_1= n-\frac{29 n^2}{12}+\frac{91 n^3}{20}-\frac{160561 n^4}{20160}+\frac{272689 n^5}{20160} -\frac{891284321 n^6}{39916800}+\frac{18640929389 n^7}{518918400}-\frac{7889377772219 n^8}{139485265920}+\cdots \\ g_2= \frac{13 n^2}{6}-\frac{194 n^3}{15} +\frac{172103 n^4}{3360}-\frac{106159 n^5}{630} +\frac{659041567 n^6}{1330560}-\frac{29059814447 n^7}{21621600}+\frac{56935382676391 n^8}{16605388800}+\cdots \\ g_3= \frac{122 n^3}{15}-\frac{69337 n^4}{840}+\frac{107501 n^5}{210}-\frac{77589203 n^6}{31185} + \frac{134489990773 n^7}{12972960}-\frac{32131705046897 n^8}{830269440}+\cdots \\ g_4= \frac{49561 n^4}{1260}-\frac{181876 n^5}{315}+\frac{153903661 n^6}{31185} -\frac{12942105289 n^7}{405405}+\frac{214851406472257 n^8}{1245404160}+\cdots \\ g_5= \frac{69458 n^5}{315}-\frac{1978379 n^6}{462}+\frac{1409842051 n^7}{30030} - \frac{6583372516843 n^8}{17297280}+\cdots \\ g_6= \frac{212378941 n^6}{155925}-\frac{67083436804 n^7}{2027025} +\frac{11530411221457 n^8}{25945920}+\cdots \\ g_7= \frac{6089027156 n^7}{675675}-\frac{25661491098559 n^8}{97297200}+\cdots \\ g_8=\frac{1424729850961 n^8}{22702680} +\cdots \\ \end{array}\right. } \end{aligned} \end{aligned}$$
(72)
$$\begin{aligned} \left\{ \begin{array}{ll} k_1= n-\frac{3 n^3}{16}+\frac{15 n^5}{256}+\frac{3 n^7}{4096}+\cdots \\ k_2= -\frac{n^2}{4}-\frac{29 n^6}{1024}-\frac{13 n^8}{1024}-\cdots \\ k_3= \frac{n^3}{16}+\frac{n^5}{64}+\frac{31 n^7}{2048}+\cdots \\ k_4= -\frac{n^4}{64}-\frac{n^6}{128}-\frac{7 n^8}{1024}- \cdots \\ k_5= \frac{n^5}{256}+\frac{3 n^7}{1024}+ \cdots \\ k_6= -\frac{n^6}{1024}-\frac{n^8}{1024}-\cdots \\ k_7= \frac{n^7}{4096}+\cdots \\ k_8= -\frac{n^8}{16384}- \cdots \\ \end{array} \right. \qquad \left\{ \begin{array}{ll} l_1= n-\frac{7 n^3}{16}+\frac{71 n^5}{256}-\frac{4201 n^7}{36864}+\cdots \\ l_2= \frac{3 n^2}{4}-\frac{5 n^4}{6}+\frac{2317 n^6}{3072}-\frac{8173 n^8}{15360}+\cdots \\ l_3= \frac{13 n^3}{16}-\frac{95 n^5}{64}+\frac{18743 n^7}{10240}- \cdots \\ l_4= \frac{197 n^4}{192}-\frac{5039 n^6}{1920}+\frac{21233 n^8}{5120}- \cdots \\ l_5= \frac{361 n^5}{256}-\frac{42833 n^7}{9216}+ \cdots \\ l_6= \frac{10471 n^6}{5120}-\frac{295949 n^8}{35840}+ \cdots \\ l_7= \frac{567409 n^7}{184320}-\cdots \\ l_8= \frac{8191879 n^8}{1720320}- \cdots \\ \end{array}\right. \end{aligned}$$
(73)
$$\begin{aligned}&\begin{aligned} {\left\{ \begin{array}{ll} m_1= 4 n-\frac{32 n^2}{3}+\frac{124 n^3}{5}-\frac{3296 n^4}{63}+\frac{32476 n^5}{315}-\frac{30081056 n^6}{155925}+\frac{702328028 n^7}{2027025}-\frac{25612953664 n^8}{42567525}+ \cdots \\ m_2= \frac{56 n^2}{3}-\frac{1984 n^3}{15}+\frac{65872 n^4}{105}-\frac{764096 n^5}{315}+\frac{85344488 n^6}{10395}-\frac{221278592 n^7}{8775}+\frac{29114859808 n^8}{405405}-\cdots \\ m_3= \frac{1792 n^3}{15}-\frac{149984 n^4}{105}+\frac{1085824 n^5}{105}-\frac{1801378688 n^6}{31185}+\frac{110474417024 n^7}{405405}-\frac{460933782976 n^8}{405405}+\cdots \\ m_4= \frac{273856 n^4}{315}-\frac{931328 n^5}{63}+\frac{4510583296 n^6}{31185}-\frac{428596936192 n^7}{405405}+\frac{7759219530112 n^8}{1216215}-\cdots \\ m_5= \frac{2137088 n^5}{315}-\frac{57822208 n^6}{385}+\frac{27867235328 n^7}{15015}-\frac{2267235680768 n^8}{135135}+ \cdots \\ m_6= \frac{1232232448 n^6}{22275}-\frac{3063276371968 n^7}{2027025}+\frac{6541987361792 n^8}{289575}- \cdots \\ m_7= \frac{314093993984 n^7}{675675}-\frac{18390588870656 n^8}{1216215}+\cdots \\ m_8= \frac{11331532414976 n^8}{2837835}-\cdots \end{array}\right. } \end{aligned} \end{aligned}$$
(74)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, JC., Shen, WB. & Ning, JS. Development of Lee’s exact method for Gauss–Krüger projection. J Geod 94, 58 (2020). https://doi.org/10.1007/s00190-020-01388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-020-01388-2

Keywords

Navigation