Skip to main content
Log in

Weighted Fourier Inequalities in Lebesgue and Lorentz Spaces

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we obtain sufficient conditions for the weighted Fourier-type transforms to be bounded in Lebesgue and Lorentz spaces. Two types of results are discussed. First, we review the method based on rearrangement inequalities and the corresponding Hardy’s inequalities. Second, we present Hörmander-type conditions on weights so that Fourier-type integral operators are bounded in Lebesgue and Lorentz spaces. Both restricted weak- and strong-type results are obtained. In the case of regular weights necessary and sufficient conditions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilera, N., Harboure, E.: On the search for weighted norm inequalities for the Fourier transform. Pac. J. Math. 104(1), 1–14 (1983)

    Article  MathSciNet  Google Scholar 

  2. Bari, N., Stechkin, S.: Best approximations and differential properties of two conjugate functions. Proc. Moscow Math. Soc. 5, 483–522 (1956)

    MathSciNet  Google Scholar 

  3. Benedetto, J.J., Heinig, H.P.: Weighted Fourier inequalities: new proofs and generalizations. J. Fourier Anal. Appl. 9(1), 1–37 (2003)

    Article  MathSciNet  Google Scholar 

  4. Benedetto, J.J., Heinig, H.P., Johnson, R.: Fourier inequalities with \(A_p\)-weights. In: Proc. Conf. Oberwolfach 1986, General Inequalities 5. Internat. Series Numerical Math. 80 Birkhauser. Basel, pp. 217–232 (1987)

  5. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, New York (1988)

    MATH  Google Scholar 

  6. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976)

    Book  Google Scholar 

  7. Bernstein, S.N.: On majorants of finite or quasi-finite growth (Russian), Doklady Akad. Nauk SSSR (N.S.) 65, 117–120(1949)

  8. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  9. Boza, S., Soria, J.: Weak-type boundedness of the Fourier transform on rearrangement invariant function spaces. Proc. Edinb. Math. Soc. 61(3), 879–890 (2018)

    Article  MathSciNet  Google Scholar 

  10. Calderón, A.P.: Spaces between \(L_1\) and \(L_\infty \) and the theorem of Marcinkiewicz. Studia Math. 26, 273–299 (1966)

    Article  MathSciNet  Google Scholar 

  11. De Carli, L., Gorbachev, D., Tikhonov, S.: Pitt inequalities and restriction theorems for the Fourier transform. Rev. Mat. Iberoam. 33(3), 789–808 (2017)

    Article  MathSciNet  Google Scholar 

  12. Gogatishvili, A., Stepanov, V.: Reduction theorems for weighted integral inequalities on the cone of monotone functions, Russ. Math. Surv., 68, no. 4 (2013), 597–664; translation from Usp. Mat. Nauk 68, No. 4 (2013), 3–68

  13. Gorbachev, D., Liflyand, E., Tikhonov, S.: Weighted norm inequalities for integral transforms. Indiana Univ. Math. J. 67(5), 1949–2003 (2018)

    Article  MathSciNet  Google Scholar 

  14. Grafakos, L.: Classical Fourier Analysis. Springer, NewYork (2014)

    MATH  Google Scholar 

  15. Heinig, H.: Weighted norm inequalities for classes of operators. Indiana U. Math. J. 33(4), 573–582 (1984)

    Article  MathSciNet  Google Scholar 

  16. Heinig, H.: Estimates for operators in mixed weighted \(L^p\)-spaces. Trans. AMS 287(2), 483–493 (1985)

    MATH  Google Scholar 

  17. Heinig, H.: A Fourier inequality with \(A_p\) and weak-\(L_1\) weight. Collect. Math. 44(1–3), 125–127 (1993)

    MathSciNet  Google Scholar 

  18. Heinig, H., Sinnamon, G.: Fourier inequalities and integral representations of functions in weighted Bergman spaces over tube domains. Indiana Univ. Math. J. 38(3), 603–628 (1989)

    Article  MathSciNet  Google Scholar 

  19. Hörmander, L.: Estimates for translation invariant operators in \(L_p\) spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  Google Scholar 

  20. Jodeit Jr., M., Torchinsky, A.: Inequalities for Fourier transforms. Studia Math. 37, (1970/71), 245–276

  21. Jurkat, W., Sampson, G.: On rearrangement and weight inequalities for the Fourier transform. Indiana U. Math. J. 33, 257–270 (1984)

    Article  MathSciNet  Google Scholar 

  22. Kalybay, A., Oinarov, R.: Bounds for a class of quasilinear integral operators on the set of non-negative and non-negative monotone function. Izv. Math. 83, 251–272 (2019)

    Article  MathSciNet  Google Scholar 

  23. Kufner, A., Persson, L.-E.: Weighted Inequalities of Hardy Type. World Scientific, Singapore (2003)

    Book  Google Scholar 

  24. Muckenhoupt, B.: A note on two weight function conditions for a Fourier transform norm inequality. Proc. Am. Math. Soc. 88(1), 97–100 (1983)

    Article  MathSciNet  Google Scholar 

  25. Muckenhoupt, B.: Weighted norm inequalities for the Fourier transform. Trans. Am. Math. Soc. 276, 142–729 (1983)

    Article  MathSciNet  Google Scholar 

  26. Nursultanov, E., Tikhonov, S.: Convolution inequalities in Lorentz spaces. J. Fourier Anal. Appl. 17, 486–505 (2011)

    Article  MathSciNet  Google Scholar 

  27. Nursultanov, E., Tikhonov, S.: Net spaces and boundedness of integral operators. J. Geom. Anal. 21, 950–981 (2011)

    Article  MathSciNet  Google Scholar 

  28. Nursultanov, E., Tikhonov, S.: Weighted norm inequalities for Riesz potential in the Lorentz spaces. Potent. Anal. 42(2), 435–456 (2015)

    Article  Google Scholar 

  29. Rastegari, J., Sinnamon, G.: Weighted Fourier inequalities via rearrangements. J. Fourier Anal. Appl. 24(5), 1225–1248 (2018)

    Article  MathSciNet  Google Scholar 

  30. Soria, J.: Lorentz spaces of weak-type. Q. J. Math. Oxford 49, 93–103 (1998)

    Article  MathSciNet  Google Scholar 

  31. Sinnamon, G.: The Fourier transform in weighted Lorentz spaces. Publ. Mat. 47, 3–29 (2003)

    Article  MathSciNet  Google Scholar 

  32. Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)

    Article  MathSciNet  Google Scholar 

  33. Stein, E.M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gord Sinnamon and Damià Torres for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Tikhonov.

Additional information

Communicated by Hans G. Feichtinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was partially supported by MTM 2017-87409-P, 2017 SGR 358, the CERCA Programme of the Generalitat de Catalunya, and the Ministry of Education and Science of the Republic of Kazakhstan (AP051 32071, AP051 32590).

Appendix A: Hardy’s Inequalities on Monotone Functions

Appendix A: Hardy’s Inequalities on Monotone Functions

In this section we address the characterization of the three-weight Hardy’s inequality

$$\begin{aligned} \left( \int _0^\infty \left( \nu (x)\int _0^x f(y)\mu (y)dy\right) ^q dx\right) ^{\frac{1}{q}}\leqslant C \left( \int _0^\infty [f(x)w(x)]^pdx\right) ^{\frac{1}{p}},\,\,f\in \mathfrak {M}^\downarrow , \end{aligned}$$
(6.6)

(see, e.g., [12]). Here \(\mathfrak {M}^\downarrow \) is the cone of all non-increasing Lebesgue-measurable functions on \(\mathbb {R}_+\). Let

$$\begin{aligned} M(t):=\int _0^t\mu , \qquad W(t):=\int _0^tw^p.\qquad \end{aligned}$$

Theorem 6.5

[12] Let C be the smallest possible constant in inequality (6.6).

(a) If \(1<p\leqslant q<\infty ,\) then \(C\asymp A_0+A_1,\) where

$$\begin{aligned} A_{0}=\underset{t>0}{\sup }\,\,A_{0}(t):=\underset{t>0}{\sup }\left( \int _{0}^{t}M^q\nu ^q\right) ^{\frac{1}{q}} W^{-\frac{1}{p}}(t) \end{aligned}$$

and

$$\begin{aligned} A_{1}:=\underset{t>0}{\sup }\left( \int _{t}^{\infty }\nu ^q\right) ^{\frac{1}{q} }\left( \int _{0}^{t}\left( \frac{M}{W}\right) ^{p^\prime }w^p\right) ^{\frac{1}{p^{\prime }}}. \end{aligned}$$

(b) If \(0<q<p<\infty \) and \(1<p<\infty ,\) then \(C\asymp B_0+B_1,\) where

$$\begin{aligned} B_{0}=B_{0}(p,q):=\left( \int _{0}^{\infty }W^{-\frac{r}{p}}(t)\left( \int _{0}^{t}M^q\nu ^q\right) ^{\frac{r}{p} }M^q(t)\nu ^q(t)dt\right) ^{\frac{1}{r}} \end{aligned}$$

and

$$\begin{aligned} B_1=B_1(p,q) :=\left( \int _{0}^{\infty }\left( \int _{t}^{\infty }\nu ^q\right) ^{\frac{r}{p }}\left( \int _{0}^{t}\left( \frac{M}{W}\right) ^{p^\prime }w^p\right) ^{\frac{r}{p^{\prime }} }\nu ^q(t)dt\right) ^{\frac{1}{r}}. \end{aligned}$$

(c) If \(0<q<p\leqslant 1\), then \(C\asymp B_0+B_1',\) where

$$\begin{aligned} B_1'=B_1'(p,q) := \left( \int _{0}^{\infty } \left( \underset{s\in [0,t]}{\mathrm { esssup}} \frac{M^p(s)}{W(s)}\right) ^{\frac{r}{p}}\left( \int _{t}^\infty \nu ^q\right) ^{\frac{r}{p}}\nu ^q(t)dt\right) ^{\frac{1}{r}}. \end{aligned}$$

(d) If \(0<p\leqslant q<\infty \) and \(0<p\leqslant 1,\) then

$$\begin{aligned} C=\underset{t>0}{\sup }\,\,W^{- \frac{1}{p}}(t)\left( \int _0^\infty M^q(\min \{s,t\})\nu ^q(s)ds\right) ^{\frac{1}{q}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nursultanov, E., Tikhonov, S. Weighted Fourier Inequalities in Lebesgue and Lorentz Spaces. J Fourier Anal Appl 26, 57 (2020). https://doi.org/10.1007/s00041-020-09764-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-020-09764-4

Keywords

Mathematics Subject Classification

Navigation