Skip to main content
Log in

A Multiscale Analysis Method for Predicting the Transverse Mechanical Properties of Unidirectional Fibre-reinforced Composites

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Mechanical property prediction methods for composites are very important as theoretical tools for engineering structural design. To more accurately capture the transverse mechanical properties of composites, a multiscale analysis method is developed in this paper. The multiscale analysis method includes three scales: (1) At the microscale, a microscopic cohesive model based on atomic potential energy is established for the interface; (2) At the mesoscale, a unit cell model is established for the fibre, matrix and interface; and (3) At the macroscale, the homogenization method, failure criteria and damage degradation models are used for predicting the transverse mechanical properties. Subsequently, the transverse mechanical properties and the damage evolution process are simulated with the multiscale analysis method. A comparison between the simulations and experiments shows that the maximum error of the predicted transverse modulus and transverse strength is −4.45 % and −12.05 %, respectively. Finally, the effects of the interfacial strength on the macroscopic transverse mechanical properties and the damage onset are analysed. The following conclusions are drawn from the simulation results: (1) The interfacial strength has a more significant effect on the transverse strength and ultimate strain than on the transverse modulus; (2) Decreasing the interfacial strength has a greater effect on the transverse modulus, strength and ultimate strain than increasing the interfacial strength; and (3) The interfacial strength can change the damage onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Weng, W. D. Wen, H. T. Cui, and B. Chen, Acta Astronaut, 147, 133 (2018).

    Google Scholar 

  2. W. Z. Wang, Y. H. Dai, C. Zhang, X. S. Gao, and M. Y. Zhao, Materials, 9, 624 (2016).

    PubMed Central  Google Scholar 

  3. N. Buannic and P. Cartraud, Int. J. Solids Stuct., 38, 7139 (2001).

    Google Scholar 

  4. Q. Qin and Q. Yang, “Macro-Micro-theory on Multifield Coupling Behavior of Heterogeneous Materials”, 1st ed., pp.1–6, Higher Education Press, Beijing, China, 2008.

    Google Scholar 

  5. S. Ghosh and S. N. Mukhopadhyay, Comput. Struct., 41, 245 (1991).

    Google Scholar 

  6. S. Ghosh, K. Lee, and P. Raghavan, Int. J. Solids Stuct., 38, 2335 (2001).

    Google Scholar 

  7. J. Aboudi, Mech. Adv. Mater. Struct., 11, 38 (2004).

    Google Scholar 

  8. C. T. Sun and R. S. Vaidya, Compos. Sci. Technol., 56, 171 (1996).

    CAS  Google Scholar 

  9. Y. L. Chen, Y. Ma, F. Pan, and S. T. Wang, Chinese J. Solid Mech., 36, 1 (2018).

    CAS  Google Scholar 

  10. J. Aboudi, Int. J. Solids Struct., 17, 1005 (1981).

    Google Scholar 

  11. M. Paley and J. Aboudi, Mech. Mater, 14, 127 (1992).

    Google Scholar 

  12. H. Li and B. Zhang, Int. J. Plasticity, 65, 22 (2015).

    CAS  Google Scholar 

  13. Y. Zhang, F. Ellyin, and Z. Xia, Int. J. Solids Struct., 40, 1907 (2003).

    Google Scholar 

  14. R. M. Hackett, Int. J. Numer. Meth. Eng., 103, 413 (2015).

    Google Scholar 

  15. A. G. Prodromou, S. V. Lomov, and I. Verpoest, Compos. Struct, 93, 1290 (2011).

    Google Scholar 

  16. Y. D. Sha, G. Y. Ding, J. G. Tian, L. Luo, and X. C. Luan, J. Aerospace Power, 33, 2324 (2018).

    Google Scholar 

  17. X. Wang, J. Zhang, Z. Wang, S. Zhou, and X. Sun, Mater. Des., 32, 3486 (2011).

    CAS  Google Scholar 

  18. G. Han, Z. D. Guan, Z. S. Li, M. Zhang, T. Y. Bian, and S. Y. Du, Appl. Compos. Mater., 22, 289 (2015).

    Google Scholar 

  19. G. Alfano and M. A. Crisfield, Int. J. Numer. Meth. Eng., 50, 1701 (2001).

    Google Scholar 

  20. X. P. Xu and A. Needleman, J. Mech. Phys. Solids, 42, 1397 (1994).

    Google Scholar 

  21. C. C. Pessan, B. Lima, and E. R. Leite, Nanoscale Advances, 1, 973 (2019).

    CAS  Google Scholar 

  22. C. M. Hadden, D. R. Klimek-McDonald, E. Pineda, J. King, A. M. Reichanadter, I. Miskioglu, G. Sh, and G. M. Odgard, Carbon, 95, 100 (2015).

    CAS  Google Scholar 

  23. J. P. Johnston, B. Koo, N. Subramanian, and A. Chattopadhyay, Compos. Part B-Eng., 111, 27 (2017).

    CAS  Google Scholar 

  24. A. A. Mousavi, B. Arash, X. Y. Zhuang, and T. Rabczuk, Compos. Part B-Eng, 95, 401 (2016).

    Google Scholar 

  25. H. Shin, S. Chang, S. Yang, B. D. Youn, and M. Cho, Compos. Part B-Eng, 87, 120 (2016).

    CAS  Google Scholar 

  26. Y. Zhang, F. Xu, C. Zhang, J. Wang, Z. Jia, D. Hui, and Y. Qiu, Compos. Part B-Eng., 99, 358 (2016).

    CAS  Google Scholar 

  27. A. K. Gupta and S. P. Harsha, Compos. Part B-Eng., 95, 172 (2016).

    CAS  Google Scholar 

  28. H. S. Bedi, M. Tiwari, and P. Agnihotri, Carbon, 132, 181 (2018).

    CAS  Google Scholar 

  29. L. A. Girifalco, M. Hodak, and R. S. Lee, Phys. Rev B, 62, 13104 (2000).

    CAS  Google Scholar 

  30. S. J. Frankland, V. M. Harik, G. M. Odegard, D. W. Brenner, and T. S. Gates, Compos. Sci. Technol., 63, 1655 (2003).

    CAS  Google Scholar 

  31. Y. P. Bai, Z. Wang, and L. Q. Feng, Mater. Des., 31, 1613 (2010).

    CAS  Google Scholar 

  32. A. Bensoussan and J. Lions, “Asymptotic Analysis for Periodic Structures”, 7th eds., pp.19–23, AMS Chelsea Publishing, Providence, America, 2011.

    Google Scholar 

  33. D. Cioranescu and J. S. Paulin, J. Math. Anal. Appl., 71, 590 (1979).

    Google Scholar 

  34. O. A. Oleinik, Lecture Notes in Physics, 195, 248 (1984).

    Google Scholar 

  35. E. Sanchez-Palencia, Lecture Notes in Physics, 127, 45 (1980).

    Google Scholar 

  36. O. Oleinik and A. Shamaev, “Mathematical Problems in Elasticity and Homogenization”, 3rd eds., pp.119–261, North Holland, Princeton, America, 2012.

    Google Scholar 

  37. D. Blackketter, D. E. Walrath, T. K. Brien, D. M. Blackketter, D. E. Walrath, and A. C. Hansen, J. Compos. Tech. Res., 15, 136 (1993).

    Google Scholar 

  38. A. Tabiei, G. Song, and Y. Jiang, J. Thermoplast. Compos., 16, 5 (2003).

    Google Scholar 

  39. I. Ivanov and A. Tabiei, Compos. Struct., 54, 489 (2001).

    Google Scholar 

  40. A. Tabiei and I. Ivanov, Int. J. Non. Linear Mech., 39, 175 (2004).

    Google Scholar 

  41. B. Zhang, Z. Yang, X. Sun, and Z. Tang, Comp. Mater. Sci., 49, 645 (2010).

    CAS  Google Scholar 

  42. X. F. Wang, Ph.D. Dissertation, NUAA, Nanjing, 2007.

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Key Laboratory of Aero-engine Thermal Environment and Structure, Ministry of Industry and Information Technology (NO. XCA1700205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, W., Fang, L., Chen, Z. et al. A Multiscale Analysis Method for Predicting the Transverse Mechanical Properties of Unidirectional Fibre-reinforced Composites. Fibers Polym 21, 1331–1346 (2020). https://doi.org/10.1007/s12221-020-9682-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9682-5

Keywords

Navigation