Skip to main content
Log in

Enhancement of the Mechanical Properties of PAN Nanofiber/Carbon Nanotube Composite Mats Produced via Needleless Electrospinning System

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The current research presents the optimization of the parameters involved in the production of polyacrylonitrile (PAN) nanofibers via the needleless electrospinning system. The experiments were designed using the Taguchi method to investigate the morphological, physical, and mechanical properties of the nanofibers. The single-wall carbon nanotubes (CNT) were used in order to improve the mechanical properties of the electrospun nanofibers. The diameter of the PAN nanofibers in the needleless system was less than 300 nm, which was smaller than that in the conventional system. The results showed that the concentration had the greatest impact on the fiber diameter than other parameters in both PAN and PAN/CNT nanofibers. The specific stress of the nanofibers produced by the needleless electrospinning system was lower than that created by the conventional electrospinning system. Addition of The CNT caused to improve the specific stress of the PAN/CNT nanofibers compared with the PAN nanofibers. However, excessive amounts of CNT had a negative effect on the elongation and modulus because of the aggregation of CNT inside the nanofibers. The X-ray diffraction analysis was used to study the crystalline behavior of the PAN nanofibers produced via the needleless electrospinning system. The results showed that the PAN nanofibers had amorphous structure compared with the conventional PAN nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Wang and T. Lin, “Needleless Electrospinning of Nanofibers: Technology and Applications”, 1st ed., pp.1–17, CRC Press, Taylor & Francis Group, New York, 2013.

    Google Scholar 

  2. P. Supaphol, C. Mituppatham, and M. Nithitanakul, Macromol. Mater. Eng., 290, 933 (2005).

    CAS  Google Scholar 

  3. S. Alborzi, L. T. Lim, and Y. Kakuda, J. Food Sci., 75, C100 (2010).

    CAS  PubMed  Google Scholar 

  4. L. M. Bellan, G. W. Coates, and H. G. Craighead, Macromol. Rapid Commun., 27, 511 (2006).

    CAS  Google Scholar 

  5. I. Keun Kwon, S. Kidoaki, and T. Matsuda, Biomaterials, 26, 3929 (2005).

    Google Scholar 

  6. S. R. Givens, K. H. Gardner, J. F. Rabolt, and D. B. Chase, Macromolecules, 40, 608 (2007).

    CAS  Google Scholar 

  7. H. Niu and T. Lin, J. Nanomater., 2012, 725950 (2012).

    Google Scholar 

  8. N. Amiraliyan, M. Nouri, and M. H. Kish, J. Appl. Polym. Sci., 113, 226 (2009).

    CAS  Google Scholar 

  9. N. Sasithorn and L. Martinová, J. Nanomater., 2014, 947315 (2014).

    Google Scholar 

  10. R. M. Nerem and A. Sambanis, Tissue Eng., 1, 3 (1995).

    CAS  PubMed  Google Scholar 

  11. J. J. Stankus, L. Soletti, K. Fujimoto, Y. Hong, D. A. Vorp, and W. R. Wagner, Biomaterials, 28, 2738 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. H. Niu, T. Lin, and X. Wang, J. Appl. Polym. Sci., 114, 3524 (2009).

    CAS  Google Scholar 

  13. E. R. Kenawy, J. M. Layman, J. R. Watkins, G. L. Bowlin, J. A. Matthews, D. G. Simpson, and G. E. Wnek, Biomaterials, 24, 907 (2003).

    CAS  Google Scholar 

  14. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Biomacromolecules, 3, 232 (2002).

    CAS  PubMed  Google Scholar 

  15. A. Valipouri, S. A. Hosseini Ravandi, A. Pishevar, and E. I. Pǎrǎu, J. Text. Polym., 3, 20 (2015).

    Google Scholar 

  16. R. Zhu, C. Y. Jiang, X. Z. Liu, B. Liu, A. Kumar, and S. Ramakrishna, Appl. Phys. Lett., 93, 013102 (2008).

    Google Scholar 

  17. S. Chen, P. Hu, A. Greiner, C. Cheng, H. Cheng, F. Chen, and H. Hou, Nanotechnology, 19, 015604 (2007).

    PubMed  Google Scholar 

  18. Y. Wu, W. Jia, Q. An, Y. Liu, J. Chen, and G. Li, Nanotechnology, 20, 245101 (2009).

    PubMed  Google Scholar 

  19. D. G. Yu, X. X. Shen, C. Branford-White, K. White, L. M. Zhu, and S. W. A. Bligh, Nanotechnology, 20, 055104 (2009).

    PubMed  Google Scholar 

  20. S. E. Kim, D. N. Heo, J. B. Lee, J. R. Kim, S. H. Park, S. H. Jeon, and I. K. Kwon, Biomed. Mater., 4, 044106 (2009).

    PubMed  Google Scholar 

  21. E. Santala, M. Kemell, M. Leskelä, and M. Ritala, Nanotechnology, 20, 035602 (2009).

    PubMed  Google Scholar 

  22. F. Dabirian, S. H. Ravandi, and A. Pishevar, Fiber. Polym., 14, 1497 (2013).

    CAS  Google Scholar 

  23. A. Valipouri, S. A. H. Ravandi, A. Pishevar, and E. I. Pǎrǎu, Int. J. Multiphase Flow, 69, 93 (2015).

    CAS  Google Scholar 

  24. T. Ondarcuhu and C. Joachim, Europhys. Lett., 42, 215 (1998).

    CAS  Google Scholar 

  25. L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang, and D. Zhu, Angew. Chem., Int. Ed., 41, 1221 (2002).

    CAS  Google Scholar 

  26. C. R. Martin, Chem. Mater., 8, 1739 (1996).

    CAS  Google Scholar 

  27. G. J. Liu, J. F. Ding, L. J. Qiao, A. Guo, B. P. Dymov, J. T. Gleeson, T. Hashimoto, and K. Saijo, Chem. Eur. J., 5, 2740 (1999).

    CAS  Google Scholar 

  28. C. Huang, H. Niu, J. Wu, Q. Ke, X. Mo, and T. Lin, J. Nanomater., 2012, 473872 (2012).

    Google Scholar 

  29. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004).

    CAS  Google Scholar 

  30. M. D. Pierschbacher and E. Ruoslahti, Nature, 309, 30 (1984).

    CAS  PubMed  Google Scholar 

  31. A. Karthick Selvam and G. Nallathambi, Fiber. Polym., 16, 1327 (2015).

    Google Scholar 

  32. R. Purwar, K. S. Goutham, and C. M. Srivastava, Fiber. Polym., 17, 1206 (2016).

    CAS  Google Scholar 

  33. H. Ebrahimnezhad-Khaljiri and R. Eslami-Farsani, Fiber. Polym., 16, 2445 (2015).

    CAS  Google Scholar 

  34. H. Ebrahimnezhad-Khaljiri, R. Eslami-Farsani, and K. Abbas Banaie, Fiber Polym., 18, 296 (2017).

    CAS  Google Scholar 

  35. A. L. Yarin and E. Zussman, Polymer, 45, 2977 (2004).

    CAS  Google Scholar 

  36. O. Jirsak, F. Sanetrnik, D. Lukas, V. Kotek, L. Martinova, and J. Chaloupek, U. S. Patent, 7585437 (2005).

  37. Y. Liu and J. H. He, Int. J. Nonlinear Sci. Numer. Simul., 8, 393 (2007).

    CAS  Google Scholar 

  38. X. Wang, H. Niu, X. Wang, and T. Lin, J. Nanomater., 2012, 548389 (2012).

    Google Scholar 

  39. X. Wang, H. Niu, T. Lin, and X. Wang, Polym. Eng. Sci., 49, 1582 (2009).

    CAS  Google Scholar 

  40. N. M. Thoppey, J. R. Bochinski, L. I. Clarke, and R. E. Gorga, Polymer, 51, 4928 (2010).

    CAS  Google Scholar 

  41. S. Tang, Y. Zeng, and X. Wang, Polym. Eng. Sci., 50, 2252 (2010).

    CAS  Google Scholar 

  42. B. Lu, Y. Wang, Y. Liu H. Duan, J. Zhou, Z. Zhang, Y. Wang, X. Li, W. Wang, W. Lan, and E. Xie, Small, 6, 1612 (2010).

    CAS  PubMed  Google Scholar 

  43. D. Wu, X. Huang, X. Lai, D. Sun, and L. Lin, J. Nanosci. Nanotechnol., 10, 4221 (2010).

    CAS  PubMed  Google Scholar 

  44. N. M. Thoppey, J. R. Bochinski, L. I. Clarke, and R. E. Gorga, Nanotechnology, 22, 345301 (2011).

    CAS  PubMed  Google Scholar 

  45. F. K. Zafarulla Khan, H. Z. Shafi, F. Nufaiei, S. A. Furquan, and A. Matin, Int. J. Adv. Eng. Nano Technol., 2, 2347 (2015).

    Google Scholar 

  46. P. Heikkilä and A. Harlin, Express Polym. Lett., 3, 437 (2009).

    Google Scholar 

  47. L. Huang, J. T. Arena, S. S. Manickam, X. Jiang, B. G. Willis, and J. R. McCutcheon, J. Membr. Sci., 460, 241 (2014).

    CAS  Google Scholar 

  48. S. A. Hosseini, N. Pan, and F. Ko, Text. Res. J., 87, 2193 (2016).

    Google Scholar 

  49. D. G. Yu, N. P. Chatterton, J. H. Yang, X. Wang, and Y. Z. Liao, Macromol. Mater. Eng., 297, 395 (2011).

    Google Scholar 

  50. R. Eslami Farsani, S. Raissi, A. Shokuhfar, and A. Sedghi, World Acad. Sci. Eng. Technol., 50, 430 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abdolkarim Hosseini Ravandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, Z., Ravandi, S.A.H., Haghighat, F. et al. Enhancement of the Mechanical Properties of PAN Nanofiber/Carbon Nanotube Composite Mats Produced via Needleless Electrospinning System. Fibers Polym 21, 1200–1211 (2020). https://doi.org/10.1007/s12221-020-9726-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9726-x

Keywords

Navigation