Skip to main content
Log in

Low Stress Shear Behaviour of Cotton Fabrics

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Shear rigidity of woven fabrics is an important property that defines the behaviour of fabrics when they are required to conform to three dimensional forms, including the human body in the case of apparel textiles or preforms and prepregs used for production of fibrous polymer composite components. Typically, shear rigidity is measured using complicated and expensive equipment. This paper presents the study of the influence of weave patterns on the shear behaviour of fabrics using a simple and precise testing method. The shear behaviour of eleven cotton fabrics in total, utilizing different weaving patterns and different yarn densities was investigated. Specimens of different dimensions were also tested to determine the influence of the specimen dimensions on the measured characteristics. The investigation resulted in a correlation between the shear behaviour and the different weaving patterns. Specifically, it was shown that weave patterns that are closer to the plain weave (firm weaves) are more restricting to the yarn rotation than loser weave patterns. Furthermore, the results show the relationship between shear behaviour and specimen dimensions as well as yarn density. Increasing the length of the specimens (the dimension of the specimen parallel to the direction in which the shearing force is applied) or decreasing the width of the specimens (the dimension of the specimen vertical to the force application) also leads to an increase of the shear rigidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Sun and N. Pan, Compos. Struct., 67, 317 (2005).

    Article  Google Scholar 

  2. C. Mack and H. M. Taylor, J. Text Inst. Trans., 47, T477 (1956).

    Article  Google Scholar 

  3. M. Nguyen, I. Herszberg, and R. Paton, Compos. Struct., 47, 767 (1999).

    Article  Google Scholar 

  4. P. Buckenham, J. Text. Inst., 88, 33 (1997).

    Article  Google Scholar 

  5. S. M. Spivak and L. R. G. Treloar, Text. Res. J., 38, 963 (1968).

    Article  Google Scholar 

  6. I. Taha, Y. Abdin, and S. Ebeid, Fiber. Polym., 14, 338 (2013).

    Article  CAS  Google Scholar 

  7. G. Lebrun and J. Denault, “American Society of Composites, Fifteenth International Conference”, pp.659–667, College Station, TX, USA, 2000.

    Google Scholar 

  8. J. Cao, R. Akkerman, P. Boisse, J. Chen, H. S. Cheng, E. F. de Graaf, J. L. Gorczyca, P. Harrison, G. Hivet, J. Launay, W. Lee, L. Liu, S. V. Lomov, A. Long, E. de Luycker, F. Morestin, J. Padvoiskis, X. Q. Peng, J. Sherwood, T. Stoilova, X. M. Tao, I. Verpoest, A. Willems, J. Wiggers, T. X. Yu, and B. Zhu, Compos. Part A Appl. Sci. Manuf., 39, 1037 (2008).

    Article  Google Scholar 

  9. J. Lindberg, B. Behre, and B. Dahlberg, Text. Res. J., 31, 99 (1961).

    Article  Google Scholar 

  10. P. Grosberg and B. J. Park, Text. Res. J., 36, 420 (1966).

    Article  Google Scholar 

  11. S. Kawabata, M. Niwa, and H. Kawai, J. Text. Inst., 64, 62 (1973).

    Article  Google Scholar 

  12. J.-L. Hu and Y.-T. Zhang, Text. Res. J., 67, 654 (1997).

    Article  CAS  Google Scholar 

  13. S. Vassiliadis, A. Kallivretaki, P. Frantzeskakis, and C. Provatidis, Int. J. Cloth. Sci. Technol., 24, 15 (2012).

    Article  Google Scholar 

  14. R. J. Bassett, R. Postle, and N. Pan, Text. Res. J., 69, 866 (1999).

    Article  CAS  Google Scholar 

  15. M. Y. Leung, T. Y. Lo, R. C. Dhingra, and K. Yeung, Res. J. Text. Appar., 6, 39 (2002).

    Article  Google Scholar 

  16. Ž. Penava, D. Š. Penava, and M. Nakić, J. Eng. Fabr. Fibers, 10, 114 (2015).

    Google Scholar 

  17. T. Chen, P. Shi, J. Zhang, Y. Li, X. Tian, J. Lian, T. Duan, and W. Zhu, Appl. Surf. Sci., 459, 129 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitroula Matsouka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inogamdjanov, D., Matsouka, D., Vassiliadis, S. et al. Low Stress Shear Behaviour of Cotton Fabrics. Fibers Polym 21, 1355–1361 (2020). https://doi.org/10.1007/s12221-020-9037-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9037-2

Keywords

Navigation