Skip to main content
Log in

Experimental Investigations on the Mechanical Properties of Bamboo Fiber and Fibril

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Bamboo based composite materials are widely used for structural components in building and textile industries. The structural hierarchy across different scales could enhance the strength and toughness of bamboo for load-bearing applications. Firstly, chemical components of bamboo fibril are described, and bamboo fibril specimens are fabricated through chemical solution processing; Secondly, functionally graded mechanical properties of macroscopic bamboo fibers are studied with tensile experiments, and relations between graded mechanical properties and microstructures are explored; Afterwards, hierarchical microstructure characterization of bamboo across different scales are performed using scanning electron microscopy (SEM), and mechanical properties of bamboo fibrils are tested using homemade in-situ micro-tension setup. The results indicate that the elastic modulus, ultimate strain and strength of bamboo fibers are: 5.952 GPa, 0.0136 and 81.13 MPa respectively. The Young’s moduli, ultimate strains and fracture strengths of the five fibril samples located in (10.478, 12.285) GPa, (0.0172, 0.0217) and (181.87, 230.50) MPa, respectively. These experimental results suggest that the modulus and ultimate strength of bamboo fibril are higher than that of bamboo fibers which are attributed to several main factors including the ages of the bamboo, bamboo species, multi-lamella structures of the fibrils, geometry differences of fibrils, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Cottingham, J. Acoust. Soc. Am., 136, 2283 (2014).

    Article  Google Scholar 

  2. B. Sharma, A. Gatóo, M. Bock, and M. Ramage, Const. Build. Mater., 81, 66 (2015).

    Article  Google Scholar 

  3. A. K. Ray, S. Mondai, S. K. Das, and P. Ramachandrarao, J. Mater. Sci., 40, 5249 (2005).

    Article  CAS  Google Scholar 

  4. S. C. Burgess and D. Pasini, J. Eng. Des., 15, 177 (2004).

    Article  Google Scholar 

  5. S. A. S. Zainathul Akhmar, M. Z. Nurul Aizan, A. Mohd Muhiddin, J. Siti Sarah, and Z. Nor Hazwani, Adv. Mater. Res., 812, 53 (2013).

    Article  Google Scholar 

  6. C. Hong, Y. Yan, T. Zhong, Y. Wu, Y. Li, Z. Wu, and B. Fei, Cellulose, 24, 333 (2017).

    Article  Google Scholar 

  7. X. Zhou, L. Chen, S. Huang, G. Su, and Y. Yu, Tran. Chin. Soc. Agr. Eng., 30, 287 (2014).

    CAS  Google Scholar 

  8. J. Xie, J. Qi, T. Hu, C. F. De Hoop, C. Y. Hse, and T. F. Shupe, J. Mater. Sci., 51, 7480 (2016).

    Article  CAS  Google Scholar 

  9. S. Amada and S. Untao, Compos. Part B-Eng., 32, 451 (2001).

    Article  Google Scholar 

  10. L. Zou, H. Jin, W. Y. Lu, and X. Li, Mater. Sci. Eng. C, 29, 1375 (2009).

    Article  CAS  Google Scholar 

  11. S. Yang, X. Liu, B. Fei, Z. Jiang, X. Yang, and H. Shan, Chin. For. Sci. Technol., 3, 70 (2012).

    Google Scholar 

  12. N. S. V. Gupta, K. V. S. Rao, and D. S. A. Kumar, IOP Confer. Ser.: Mater. Sci. Eng., 149, 012093 (2016).

    Article  Google Scholar 

  13. Y. Wang, G. Wang, H. Cheng, G. Tian, Z. Liu, Q. F. Xiao, X. Zhou, X. Han, and X. Gao, Text. Res. J., 80, 334 (2010).

    Article  Google Scholar 

  14. L. Ma, H. He, C. Jiang, L. Zhou, Y. Luo, and D. Jia, J. Macromol. Sci. B, 51, 2232 (2012).

    Article  CAS  Google Scholar 

  15. H. Chen, Y. Yu, T. Zhong, Y. Wu, Y. Li, Z. Wu, and B. Fei, Cellulose, 24, 333 (2017).

    Article  CAS  Google Scholar 

  16. W. Wu, X. Li, and L. Liu, Rev. Sci. Instru., 80, 085107 (2009).

    Article  Google Scholar 

  17. E. P. S. Tan, C. N. Goh, C. H. Sow, and C. T. Lim, Appl. Phys. Lett., 86, 073115 (2005).

    Article  Google Scholar 

  18. R. Krishnaprasad, N. R. Veena, H. J. Maria, R. Rajan, M. Skrifvars, and K. Joseph, J. Polym. Environ., 17, 109 (2009).

    Article  CAS  Google Scholar 

  19. P. K. Kushwahak and R. Kumar, J. Reinf. Plast. Comp., 30, 73 (2011).

    Article  Google Scholar 

  20. B. Lybeer, J. Van Acker, and P. Goetghebeur, WoodSci. Technol., 40, 477 (2006).

    CAS  Google Scholar 

  21. W. Liese and G. Weiner, Wood Sci. Tech., 30, 77 (1996).

    Article  CAS  Google Scholar 

  22. S. M. Yang, Z. H. Jiang, H. Q. Ren, B. H. Fei, and X. E. Liu, Spectrosc. Spect. Anal., 30, 3399 (2010).

    CAS  Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China (Grant No. 51874213) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuepeng Jiang or Re Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, M., Jiang, X., Ke, H. et al. Experimental Investigations on the Mechanical Properties of Bamboo Fiber and Fibril. Fibers Polym 21, 1382–1386 (2020). https://doi.org/10.1007/s12221-020-9554-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9554-z

Keywords

Navigation