Skip to main content
Log in

Mixed meshless local Petrov–Galerkin (MLPG) collocation methods for gradient elasticity theories of Helmholtz type

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Two mixed meshless collocation methods for solving problems by considering a linear gradient elasticity theory of the Helmholtz type are proposed. The solution process is facilitated by employing operator-split procedures, splitting the original 4th-order problem into two uncoupled second-order sub-problems, which are then solved in a staggered manner by applying the mixed meshless local Petrov–Galerkin collocation strategy. Thereby, identical nodal pattern is used for the discretization of both lower-order problems, while the approximation of all unknown field variables is performed by applying the Moving Least Squares functions with interpolatory conditions. The performance of the derived methods is tested by some suitable numerical examples, dealing with elasticity problems that are often treated by gradient theories. Therein, it is demonstrated that both proposed methods are able to capture the size effect and that the strain-based method is able to produce the non-singular strain field around the crack tip, similar to the nonlocal elasticity approach of Eringen. It has been found out that the obtained results agree well with available analytical and numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45

Similar content being viewed by others

References

  1. Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11:385–414

    MathSciNet  MATH  Google Scholar 

  2. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    MathSciNet  MATH  Google Scholar 

  3. Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4:109–124

    MATH  Google Scholar 

  4. Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48:1962–1990

    Google Scholar 

  5. Peerlings RHJ, Fleck NA (2004) Computational evaluation of strain gradient elasticity constants. Int J Multiscale Comput Eng 2:599–619

    Google Scholar 

  6. Placidi L, Andreaus U, Corte AD et al (2015) Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Angew Math Phys 66:3699–3725

    MathSciNet  MATH  Google Scholar 

  7. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Google Scholar 

  8. Triantafyllidis N, Aifantis EC (1986) A gradient approach to localization of deformation. I. Hyperelastic materials. J Elast 16:225–237

    MathSciNet  MATH  Google Scholar 

  9. Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30:1279–1299

    MATH  Google Scholar 

  10. Zervos A (2008) Finite elements for elasticity with microstructure and gradient elasticity. Int J Numer Meth Eng 73:564–595

    MathSciNet  MATH  Google Scholar 

  11. Papanicolopulos S-A, Zervos A, Vardoulakis I (2009) A three-dimensional C1 finite element for gradient elasticity. Int J Numer Meth Eng 77:1396–1415

    MATH  Google Scholar 

  12. Lesičar T, Tonković Z, Sorić J (2014) A second-order two-scale homogenization procedure using C1 macrolevel discretization. Comput Mech 54:425–441

    MathSciNet  MATH  Google Scholar 

  13. Shu JY, King WE, Fleck NA (1999) Finite elements for materials with strain gradient effects. Int J Numer Meth Eng 44:373–391

    MATH  Google Scholar 

  14. Amanatidou E, Aravas N (2002) Mixed finite element formulations of strain-gradient elasticity problems. Comput Methods Appl Mech Eng 191:1723–1751

    MATH  Google Scholar 

  15. Zybell L, Mühlich U, Kuna M, Zhang ZL (2012) A three-dimensional finite element for gradient elasticity based on a mixed-type formulation. Comput Mater Sci 52:268–273

    Google Scholar 

  16. Askes H, Aifantis E (2002) Numerical modeling of size effects with gradient elasticity: formulation, meshless discretization and examples. Int J Fract 117:347–358

    Google Scholar 

  17. Askes H, Gutierrez MA (2006) Implicit gradient elasticity. Int J Numer Meth Eng 67:400–416

    MathSciNet  MATH  Google Scholar 

  18. Lazar M, Polyzos D (2015) On non-singular crack fields in Helmholtz type enriched elasticity theories. Int J Solids Struct 62:1–7

    Google Scholar 

  19. Kolo I, Askes H, de Borst R (2017) Convergence analysis of Laplacian-based gradient elasticity in an isogeometric framework. Finite Elem Anal Des 135:56–67

    Google Scholar 

  20. Askes H, Morata I, Aifantis EC (2008) Finite element analysis with staggered gradient elasticity. Comput Struct 86:1266–1279

    Google Scholar 

  21. Bagni C, Askes H (2015) Unified finite element methodology for gradient elasticity. Comput Struct 160:100–110

    Google Scholar 

  22. Sladek J, Bishay PL, Repka M, Pan E, Sladek V (2018) Analysis of quantum-dot systems under thermal loads based on gradient elasticity. Smart Mater Struct 27:095009

    Google Scholar 

  23. Tenek L, Aifantis EC (2002) A two-dimensional finite element implementation of a special form of gradient elasticity. CMES Comput Model Eng Sci 3:731–741

    MathSciNet  MATH  Google Scholar 

  24. Ru CQ, Aifantis EC (1993) A simple approach to solve boundary-value problems ingradient elasticity. Acta Mech 101:59–68

    MathSciNet  MATH  Google Scholar 

  25. Tang Z, Shen S, Atluri SN (2003) Analysis of materials with strain-gradient effects: a meshless local Petrov–Galerkin(MLPG) approach, with nodal displacements only. CMES-Comput Model Eng Sci 4:177–196

    MATH  Google Scholar 

  26. Sidhardh S, Ray MC (2018) Element-free Galerkin model of nano-beams considering strain gradient elasticity. Acta Mech 229:2765–2786

    MathSciNet  MATH  Google Scholar 

  27. Sansour C, Skatulla S (2009) A strain gradient generalized continuum approach for modelling elastic scale effects. Comput Methods Appl Mech Eng 198:1401–1412

    MATH  Google Scholar 

  28. Fischer P, Klassen M, Mergheim J et al (2011) Isogeometric analysis of 2D gradient elasticity. Comput Mech 47:325–334

    MathSciNet  MATH  Google Scholar 

  29. Niiranen J, Kiendl J, Niemi AH, Reali A (2017) Isogeometric analysis for sixth-order boundary value problems of gradient-elastic Kirchhoff plates. Comput Methods Appl Mech Eng 316:328–348

    MathSciNet  MATH  Google Scholar 

  30. Fischer P, Mergheim J, Steinmann P (2010) On the C1 continuous discretization of non-linear gradient elasticity: a comparison of NEM and FEM based on Bernstein-Bézier patches. Int J Numer Meth Eng 82:1282–1307

    MATH  Google Scholar 

  31. Jarak T, Soric J (2008) Analysis of rectangular square plates by the mixed meshless local Petrov–Galerkin (MLPG) approach. Comput Model Eng Sci 38:231–261

    MathSciNet  MATH  Google Scholar 

  32. Atluri SN, Shen S (2005) Simulation of a 4th order ODE: illustration of various primal & mixed MLPG methods. CMES 7:241–268

    MathSciNet  MATH  Google Scholar 

  33. Atluri SN, Han ZD, Rajendran AM (2004) A new implementation of the meshless finite volume method, through the MLPG “mixed” approach. CMES Comput Model Eng Sci 6:491–514

    MathSciNet  MATH  Google Scholar 

  34. Reali A, Hughes TJR (2015) An introduction to isogeometric collocation methods. In: Beer BSG (ed) Isogeometric methods for numerical simulation. Springer, Vienna

    Google Scholar 

  35. Chen J-S, Hillaman M, Chi S-W (2017) meshfree methods: progress made after 20 years. J Eng Mech 143:04017001

    Google Scholar 

  36. Chen J-S, Hu H-Y (2011) Error analysis of collocation method based on reproducing kernel approximation. Numer Methods Par Differ Equ 27:554–580

    MathSciNet  MATH  Google Scholar 

  37. Atluri SN (2004) The meshless method (MLPG) for domain & BIE discretization. Tech Science Press, Forsyth

    MATH  Google Scholar 

  38. Breitkopf P, Touzot G, Villon P (2000) Double grid diffuse collocation method. Comput Mech 25:199–206

    MathSciNet  MATH  Google Scholar 

  39. Atluri SN, Liu HT, Han ZD (2006) Meshless local Petrov–Galerkin (MLPG) mixed collocation method for elasticity problems. CMES-Comput Model Eng Sci 14:141–152

    MathSciNet  MATH  Google Scholar 

  40. Wen PH, Aliabadi MH (2008) An improved meshless collocation method for elastostatic and elastodynamic problems. Commun Numer Methods Eng 24:635–651

    MathSciNet  MATH  Google Scholar 

  41. Shu L, Atluri SN (2008) Topology-optimization of structures based on the MLPG mixed collocation method. CMES Comput Model Eng Sci 26:61–74

    MATH  Google Scholar 

  42. Zhang T, He Y, Dong L, Li S, Alotaibi A, Atluri SN (2014) Meshless local Petrov-Galerkin mixed collocation method for solving cauchy inverse problems of steady-state heat transfer. CMES Comput Model Eng Sci 97:509–533

    MathSciNet  MATH  Google Scholar 

  43. Zhang T, Dong L, Alotaibi A, Atluri SN (2013) Application of the MLPG mixed collocation method for solving inverse problems of linear isotropic/anisotropic elasticity with simply/multiply-connected domains. CMES Comput Model Eng Sci 94:1–28

    MathSciNet  MATH  Google Scholar 

  44. Jalušić B, Sorić J, Jarak T (2017) Mixed meshless local Petrov-Galerkin collocation method for modeling of material discontinuity. Comput Mech 59:1–19

    MathSciNet  MATH  Google Scholar 

  45. Most T, Bucher C (2005) A moving least squares weighting function for the element-free galerkin method which almost fulfills essential boundary conditions. Struct Eng Mech 21:315–332

    Google Scholar 

  46. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Dordrecht

    Google Scholar 

  47. Askes H, Suiker ASJ, Sluys LJ (2002) A classification of higher-order strain-gradient models: linear analysis. Arch Appl Mech 72:171–188

    MATH  Google Scholar 

  48. Polizzotto C (2003) Gradient elasticity and nonstandard boundary conditions. Int J Solids Struct 40:7399–7423

    MathSciNet  MATH  Google Scholar 

  49. Askes H, Metrikine AV (2005) Higher-order continua derived from discrete media: continualisation aspects and boundary conditions. Int J Solids Struct 42:187–202

    MATH  Google Scholar 

  50. Liu GR (2003) Mesh free methods: moving beyond the finite element method. CRC Press, Boca Raton

    MATH  Google Scholar 

  51. Atluri SN, Shen S (2005) Simulation of a 4th order ODE: illustration of various primal & mixed MLPG methods. CMES Comput Model Eng Sci 7:241–268

    MathSciNet  MATH  Google Scholar 

  52. Soric J, Jarak T (2010) Mixed meshless formulation for analysis of shell-like structures. Comput Methods Appl Mech Eng 199:1153–1164

    MathSciNet  MATH  Google Scholar 

  53. Papargyri-Beskou S, Beskos D (2010) Static analysis of gradient elastic bars, beams, plates and shells. Open Mech J 4:65–73

    Google Scholar 

  54. Engel G, Garikipati K, Hughes TJR, Larson MG, Mazzei L, Taylor RL (2002) Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput Methods Appl Mech Eng 191:3669–3750

    MathSciNet  MATH  Google Scholar 

  55. Mott RL, Untener JA (2018) Applied strength of materials, 6th edn. CRC Press, Boca Raton

    Google Scholar 

  56. Gourgiotis PA, Georgiadis HG (2009) Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity. J Mech Phys Solids 57:1898–1920

    MathSciNet  MATH  Google Scholar 

  57. Georgiadis H (2003) The mode III crack problem in microstructured solids governed by dipolar gradient elasticity: static and dynamic analysis. J Appl Mech 70:517–530

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the Croatian Science Foundation under the Project 2516. The authors would also like to acknowledge the financial support by the Alexander von Humboldt Foundation, Germany, that enabled fruitful collaboration with the researchers at the Institute of Continuum Mechanics, Leibniz Universität Hannover.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Jarak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalušić, B., Jarak, T. & Sorić, J. Mixed meshless local Petrov–Galerkin (MLPG) collocation methods for gradient elasticity theories of Helmholtz type. Comput Mech 66, 575–602 (2020). https://doi.org/10.1007/s00466-020-01866-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01866-6

Keywords

Navigation