Skip to main content

Advertisement

Log in

Thermal Decomposition and Kinetics Analysis of Microwave Pyrolysis of Dunaliella salina Using Composite Additives

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The thermal characteristics and kinetics of the microalgae Dunaliella salina were evaluated through microwave catalytic pyrolysis under composite additives (blends of graphite (GP) and Na2CO3 (NC)). GP was blended with NC of 0%, 30%, 50%, 70%, and 100%, which were named as NC, 3GP7NC, 5GP5NC, 7GP3NC, and GP. Then different amounts (5%, 10%, and 15%) of NC and 5GP5NC were also studied. The pyrolysis characteristic parameters, characteristic index (D) and activation energy (E), and thermodynamic parameters, including enthalpy (∆H) and Gibbs free energy (∆G), were studied in this paper. In all the groups with the amount of 5%, the initial decomposition temperature (Ti) decreased with the NC proportion of the composite additive increased. The 5GP5NC group obtained the largest values of maximum weight loss rate (Rmax), average weight loss rate (Rmean), and D, which were 3.78%/min, 1.67%/min, and 12.35 × 10−7, respectively. However, the NC group achieved a small value of E (66.28 kJ/mol), ∆H (60.46 kJ/mol), and ∆G (175.97 kJ/mol). When changing the amounts of 5GP5NC, the suitable amount was 15%, based on its largest D (13.76 × 10−7), smallest E (52.49 kJ/mol), excellent weight loss, and thermodynamic characteristic. For NC, the maximum Rmax was obtained at 15%, while the greatest D and minimum E were achieved at 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. He Q, Ding L, Gong Y, Li W, Wei J, Yu G (2019) Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis. Bioresour Technol 280:104–111. https://doi.org/10.1016/j.biortech.2019.01.138

    Article  CAS  Google Scholar 

  2. Dhyani V, Kumar J, Bhaskar T (2017) Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresour Technol 245:1122–1129. https://doi.org/10.1016/j.biortech.2017.08.189

    Article  CAS  Google Scholar 

  3. Hu Z, Ma X, Li L (2013) The characteristic and evaluation method of fast pyrolysis of microalgae to produce syngas. Bioresour Technol 140:220–226. https://doi.org/10.1016/j.biortech.2013.04.096

    Article  CAS  Google Scholar 

  4. Pan P, Hu C, Yang W, Li Y, Dong L, Zhu L, Tong D, Qing R, Fan Y (2010) The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour Technol 101:4593–4599. https://doi.org/10.1016/j.biortech.2010.01.070

    Article  CAS  Google Scholar 

  5. Domínguez A, Menéndez JA, Fernández Y, Pis JJ, Nabais JMV, Carrott PJM, Carrott MMLR (2007) Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. J Anal Appl Pyrolysis 79:128–135. https://doi.org/10.1016/j.jaap.2006.08.003

    Article  CAS  Google Scholar 

  6. Li K, Chen J, Peng J, Ruan R, Srinivasakannan C, Chen G (2020) Pilot-scale study on enhanced carbothermal reduction of low-grade pyrolusite using microwave heating. Powder Technol 360:846–854. https://doi.org/10.1016/j.powtec.2019.11.015

    Article  CAS  Google Scholar 

  7. Li K, Chen J, Peng J, Omran M, Chen G (2020) Efficient improvement for dissociation behavior and thermal decomposition of manganese ore by microwave calcination. J Clean Prod 260:121074. https://doi.org/10.1016/j.jclepro.2020.121074

    Article  CAS  Google Scholar 

  8. Li K, Jiang Q, Chen J, Peng J, Li X, Koppala S, Omran M, Chen G (2020) The controlled preparation and stability mechanism of partially stabilized zirconia by microwave intensification. Ceram Int 46:7523–7530. https://doi.org/10.1016/j.ceramint.2019.11.251

    Article  CAS  Google Scholar 

  9. Wang Y, Wu Q, Yang S, Wu J, Ma Z, Jiang L et al (2019) Microwave-assisted catalytic fast pyrolysis coupled with microwave-absorbent of soapstocks for bio-oil in a downdraft reactor. Energy Convers Manag 185:11–20. https://doi.org/10.1016/j.enconman.2019.01.101

    Article  CAS  Google Scholar 

  10. Fang S, Gu W, Dai M, Xu J, Yu Z, Lin Y, Chen J, Ma X (2018) A study on microwave-assisted fast co-pyrolysis of chlorella and tire in the N2 and CO2 atmospheres. Bioresour Technol 250:821–827. https://doi.org/10.1016/j.biortech.2017.11.080

    Article  CAS  Google Scholar 

  11. Zuo F, Badev A, Saunier S, Goeuriot D, Heuguet R, Marinel S (2014) Microwave versus conventional sintering: estimate of the apparent activation energy for densification of α-alumina and zinc oxide. J Eur Ceram Soc 34:3103–3110. https://doi.org/10.1016/j.jeurceramsoc.2014.04.006

    Article  CAS  Google Scholar 

  12. Li K, Chen G, Chen J, Peng J, Ruan R, Srinivasakannan C (2019) Microwave pyrolysis of walnut shell for reduction process of low-grade pyrolusite. Bioresour Technol 291:121838. https://doi.org/10.1016/j.biortech.2019.121838

    Article  CAS  Google Scholar 

  13. Li K, Chen J, Chen G, Peng J, Ruan R, Srinivasakannan C (2019) Microwave dielectric properties and thermochemical characteristics of the mixtures of walnut shell and manganese ore. Bioresour Technol 286:121381. https://doi.org/10.1016/j.biortech.2019.121381

    Article  CAS  Google Scholar 

  14. Chen C, Lu Z, Ma X, Long J, Peng Y, Hu L, Lu Q (2013) Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. Bioresour Technol 144:563–571. https://doi.org/10.1016/j.biortech.2013.07.011

    Article  CAS  Google Scholar 

  15. Azizi K, Moshfegh Haghighi A, Keshavarz Moraveji M, Olazar M, Lopez G (2019) Co-pyrolysis of binary and ternary mixtures of microalgae, wood and waste tires through TGA. Renew Energy 142:264–271. https://doi.org/10.1016/j.renene.2019.04.116

    Article  CAS  Google Scholar 

  16. Patel S, Kundu S, Halder P, Rickards L, Paz-Ferreiro J, Surapaneni A, Madapusi S, Shah K (2019) Thermogravimetric analysis of biosolids pyrolysis in the presence of mineral oxides. Renew Energy 141:707–716. https://doi.org/10.1016/j.renene.2019.04.047

    Article  CAS  Google Scholar 

  17. Li K, Jiang Q, Gao L, Chen J, Peng J, Koppala S, Omran M, Chen G (2020) Investigations on the microwave absorption properties and thermal behavior of vanadium slag: improvement in microwave oxidation roasting for recycling vanadium and chromium. J Hazard Mater 395:122698. https://doi.org/10.1016/j.jhazmat.2020.122698

    Article  CAS  Google Scholar 

  18. Namazi AB, Grant Allen D, Jia CQ (2015) Microwave-assisted pyrolysis and activation of pulp mill sludge. Biomass Bioenergy 73:217–224. https://doi.org/10.1016/j.biombioe.2014.12.023

    Article  CAS  Google Scholar 

  19. Song Q, Zhao H, Xing W, Song L, Yang L, Yang D, Shu X (2018) Effects of various additives on the pyrolysis characteristics of municipal solid waste. Waste Manag 78:621–629. https://doi.org/10.1016/j.wasman.2018.06.033

    Article  CAS  Google Scholar 

  20. Andrade LA, Batista FRX, Lira TS, Barrozo MAS, Vieira LGM (2018) Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii. Renew Energy 119:731–740. https://doi.org/10.1016/j.renene.2017.12.056

    Article  CAS  Google Scholar 

  21. Rahman MM, Liu R, Cai J (2018) Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – a review. Fuel Process Technol 180:32–46. https://doi.org/10.1016/j.fuproc.2018.08.002

    Article  CAS  Google Scholar 

  22. Liu H, Jiaqiang E, Deng Y, Xie C, Zhu H (2016) Experimental study on pyrolysis characteristics of the tobacco stem based on microwave heating method. Appl Therm Eng 106:473–479. https://doi.org/10.1016/j.applthermaleng.2016.06.042

    Article  CAS  Google Scholar 

  23. Fang S, Yu Z, Lin Y, Lin Y, Fan Y, Liao Y, Ma X (2017) A study on experimental characteristic of co-pyrolysis of municipal solid waste and paper mill sludge with additives. Appl Therm Eng 111:292–300. https://doi.org/10.1016/j.applthermaleng.2016.09.102

    Article  CAS  Google Scholar 

  24. Wang Y, Dai L, Wang R, Fan L, Liu Y, Xie Q, Ruan R (2016) Hydrocarbon fuel production from soapstock through fast microwave-assisted pyrolysis using microwave absorbent. J Anal Appl Pyrolysis 119:251–258. https://doi.org/10.1016/j.jaap.2016.01.008

    Article  CAS  Google Scholar 

  25. Dinc G, Yel E (2018) Self-catalyzing pyrolysis of olive pomace. J Anal Appl Pyrolysis 134:641–646. https://doi.org/10.1016/j.jaap.2018.08.018

    Article  CAS  Google Scholar 

  26. Zhao X, Wang W, Liu H, Ma C, Song Z (2014) Microwave pyrolysis of wheat straw: product distribution and generation mechanism. Bioresour Technol 158:278–285. https://doi.org/10.1016/j.biortech.2014.01.094

    Article  CAS  Google Scholar 

  27. Xu Q, Ma X, Yu Z, Cai Z (2014) A kinetic study on the effects of alkaline earth and alkali metal compounds for catalytic pyrolysis of microalgae using thermogravimetry. Appl Therm Eng 73:357–361. https://doi.org/10.1016/j.applthermaleng.2014.07.068

    Article  CAS  Google Scholar 

  28. Xu B, Cao Q, Kuang D, Gasem KAM, Adidharma H, Ding D, Fan M (2019) Kinetics and mechanism of CO2 gasification of coal catalyzed by Na2CO3, FeCO3 and Na2CO3–FeCO3. J Energy Inst 93:922–933. https://doi.org/10.1016/j.joei.2019.08.004

    Article  CAS  Google Scholar 

  29. Mohamed BA, Ellis N, Kim CS, Bi X (2019) Microwave-assisted catalytic biomass pyrolysis: effects of catalyst mixtures. Appl Catal B Environ 253:226–234. https://doi.org/10.1016/j.apcatb.2019.04.058

    Article  CAS  Google Scholar 

  30. Monterroso R, Fan M, Argyle MD, Varga K, Dyar D, Tang J, Sun Q, Towler B, Elliot KW, Kammen D (2014) Characterization of the mechanism of gasification of a powder river basin coal with a composite catalyst for producing desired syngases and liquids. Appl Catal A Gen 475:116–126. https://doi.org/10.1016/j.apcata.2014.01.007

    Article  CAS  Google Scholar 

  31. López-González D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L (2014) Comparison of the steam gasification performance of three species of microalgae by thermogravimetric–mass spectrometric analysis. Fuel 134:1–10. https://doi.org/10.1016/j.fuel.2014.05.051

    Article  CAS  Google Scholar 

  32. Chen C, Ma X, He Y (2012) Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Bioresour Technol 117:264–273. https://doi.org/10.1016/j.biortech.2012.04.077

    Article  CAS  Google Scholar 

  33. Dai M, Yu Z, Fang S, Ma X (2019) Behaviors, product characteristics and kinetics of catalytic co-pyrolysis spirulina and oil shale. Energy Convers Manag 192:1–10. https://doi.org/10.1016/j.enconman.2019.04.032

    Article  CAS  Google Scholar 

  34. Grierson S, Strezov V, Ellem G, Mcgregor R, Herbertson J (2009) Thermal characterisation of microalgae under slow pyrolysis conditions. J Anal Appl Pyrolysis 85:118–123. https://doi.org/10.1016/j.jaap.2008.10.003

    Article  CAS  Google Scholar 

  35. Chen L, Yu Z, Xu H, Wan K, Liao Y, Ma X (2019) Microwave-assisted co-pyrolysis of Chlorella vulgaris and wood sawdust using different additives. Bioresour Technol 273:34–39. https://doi.org/10.1016/j.biortech.2018.10.086

    Article  CAS  Google Scholar 

  36. Chen C, Huang D, Bu X, Huang Y, Tang J, Guo C, Yang S, Huang H (2020) Microwave-assisted catalytic pyrolysis of Dunaliella salina using different compound additives. Renew Energy 149:806–815. https://doi.org/10.1016/j.renene.2019.12.089

    Article  CAS  Google Scholar 

  37. Francavilla M, Kamaterou P, Intini S, Monteleone M, Zabaniotou A (2015) Cascading microalgae biorefinery: fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue. Algal Res 11:184–193. https://doi.org/10.1016/j.algal.2015.06.017

    Article  Google Scholar 

  38. Bahramian AR (2013) Pyrolysis and flammability properties of novolac/graphite nanocomposites. Fire Saf J 61:265–273. https://doi.org/10.1016/j.firesaf.2013.09.012

    Article  CAS  Google Scholar 

  39. Tirapanampai C, Phetwarotai W, Phusunti N (2019) Effect of temperature and the content of Na2CO3 as a catalyst on the characteristics of bio-oil obtained from the pyrolysis of microalgae. J Anal Appl Pyrolysis 142:104644. https://doi.org/10.1016/j.jaap.2019.104644

    Article  CAS  Google Scholar 

  40. Mamaeva A, Tahmasebi A, Tian L, Yu J (2016) Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil. Bioresour Technol 211:382–389. https://doi.org/10.1016/j.biortech.2016.03.120

    Article  CAS  Google Scholar 

  41. Hu Z, Ma X, Li L (2015) Optimal conditions for the catalytic and non-catalytic pyrolysis of water hyacinth. Energy Convers Manag 94:337–344. https://doi.org/10.1016/j.enconman.2015.01.087

    Article  CAS  Google Scholar 

  42. Hu Z, Ma X, Li L, Wu J (2014) The catalytic pyrolysis of microalgae to produce syngas. Energy Convers Manag 85:545–550. https://doi.org/10.1016/j.enconman.2014.04.096

    Article  CAS  Google Scholar 

  43. Sait HH, Hussain A, Salema AA, Ani FN (2012) Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol 118:382–389. https://doi.org/10.1016/j.biortech.2012.04.081

    Article  CAS  Google Scholar 

  44. He Y, Chang C, Li P, Han X, Li H, Fang S, Chen J, Ma X (2018) Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis. Bioresour Technol 259:294–303. https://doi.org/10.1016/j.biortech.2018.03.043

    Article  CAS  Google Scholar 

  45. Babich IV, van der Hulst M, Lefferts L, Moulijn JA, O’Connor P, Seshan K (2011) Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy 35:3199–3207. https://doi.org/10.1016/j.biombioe.2011.04.043

    Article  CAS  Google Scholar 

  46. Wang J, Zhang M, Chen M, Min F, Zhang S, Ren Z, Yan Y (2006) Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass. Thermochim Acta 444:110–114. https://doi.org/10.1016/j.tca.2006.02.007

    Article  CAS  Google Scholar 

  47. Du Z, Li Y, Wang X, Wan Y, Chen Q, Wang C et al (2011) Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol 102:4890–4896. https://doi.org/10.1016/j.biortech.2011.01.055

    Article  CAS  Google Scholar 

  48. Hu Z, Ma X, Chen C (2012) A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresour Technol 107:487–493. https://doi.org/10.1016/j.biortech.2011.12.095

    Article  CAS  Google Scholar 

  49. Chen X, Liu L, Zhang L, Zhao Y, Zhang Z, Xie X, Qiu P, Chen G, Pei J (2018) Thermogravimetric analysis and kinetics of the co-pyrolysis of coal blends with corn stalks. Thermochim Acta 659:59–65. https://doi.org/10.1016/j.tca.2017.11.005

    Article  CAS  Google Scholar 

  50. Ounas A, Aboulkas A, El Harfi K, Bacaoui A, Yaacoubi A (2011) Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. Bioresour Technol 102:11234–11238. https://doi.org/10.1016/j.biortech.2011.09.010

    Article  CAS  Google Scholar 

  51. Zhou W, Bai B, Chen G, Ma L, Yan B (2019) Thermogravimetric characteristics and kinetics of sawdust pyrolysis catalyzed by potassium salt during the process of hydrogen preparation. Int J Hydrog Energy 44:I5863–I5870. https://doi.org/10.1016/j.ijhydene.2019.01.060

    Article  CAS  Google Scholar 

  52. Fong MJB, Loy ACM, Chin BLF, Lam MK, Yusup S, Jawad ZA (2019) Catalytic pyrolysis of Chlorella vulgaris: kinetic and thermodynamic analysis. Bioresour Technol 289:121689. https://doi.org/10.1016/j.biortech.2019.121689

    Article  CAS  Google Scholar 

  53. Chen C, Yang S, Bu X (2019) Microwave drying effect on pyrolysis characteristics and kinetics of microalgae. Bioenerg Res 12:400–408. https://doi.org/10.1007/s12155-019-09970-z

    Article  CAS  Google Scholar 

  54. Yuan X, He T, Cao H, Yuan Q (2017) Cattle manure pyrolysis process: kinetic and thermodynamic analysis with isoconversional methods. Renew Energy 107:489–496. https://doi.org/10.1016/j.renene.2017.02.026

    Article  CAS  Google Scholar 

  55. Zhang X, Han Y, Li Y, Sun Y (2017) Effect of heating rate on pyrolysis behavior and kinetic characteristics of siderite. Minerals-Basel 7:211. https://doi.org/10.3390/min7110211

    Article  CAS  Google Scholar 

  56. Kaur R, Gera P, Jha MK, Bhaskar T (2018) Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour Technol 250:422–428. https://doi.org/10.1016/j.biortech.2017.11.077

    Article  CAS  Google Scholar 

  57. Saffe A, Fernandez A, Echegaray M, Mazza G, Rodriguez R (2019) Pyrolysis kinetics of regional agro-industrial wastes using isoconversional methods. Biofuels 10:245–257. https://doi.org/10.1080/17597269.2017.1316144

    Article  CAS  Google Scholar 

  58. Chong CT, Mong GR, Ng J, Chong WWF, Ani FN, Lam SS et al (2019) Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Convers Manag 180:1260–1267

    Article  CAS  Google Scholar 

  59. Alves JLF, Da Silva JCG, Da Silva Filho VF, Alves RF, Ahmad MS, Ahmad MS et al (2019) Bioenergy potential of red macroalgae Gelidium floridanum by pyrolysis: evaluation of kinetic triplet and thermodynamics parameters. Bioresour Technol 291:121892. https://doi.org/10.1016/j.biortech.2019.121892

    Article  CAS  Google Scholar 

  60. Shahid A, Ishfaq M, Ahmad MS, Malik S, Farooq M, Hui Z, Batawi AH, Shafi ME, Aloqbi AA, Gull M, Mehmood MA (2019) Bioenergy potential of the residual microalgal biomass produced in city wastewater assessed through pyrolysis, kinetics and thermodynamics study to design algal biorefinery. Bioresour Technol 289:121701. https://doi.org/10.1016/j.biortech.2019.121701

    Article  CAS  Google Scholar 

  61. Alves JLF, Silva JCGD, Filho VFDS, Alves RF, de Araujo Galdino WV, De Sena RF (2019) Kinetics and thermodynamics parameters evaluation of pyrolysis of invasive aquatic macrophytes to determine their bioenergy potentials. Biomass Bioenergy 121:28–40. https://doi.org/10.1016/j.biombioe.2018.12.015

    Article  CAS  Google Scholar 

  62. Xu Y, Chen B (2013) Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol 146:485–493. https://doi.org/10.1016/j.biortech.2013.07.086

    Article  CAS  Google Scholar 

  63. Xiang Y, Yulin X, Wang L (2017) Kinetics of the thermal decomposition of poplar sawdust. Energ Source Part A 39:213–218. https://doi.org/10.1080/15567036.2016.1212291

    Article  Google Scholar 

  64. Ding L, Zhou Z, Guo Q, Huo W, Yu G (2015) Catalytic effects of Na2CO3 additive on coal pyrolysis and gasification. Fuel 142:134–144. https://doi.org/10.1016/j.fuel.2014.11.010

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by Guangxi Natural Science Foundation (2019GXNSFAA185049) and Open Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (2019K012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiang Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Bu, X., Huang, D. et al. Thermal Decomposition and Kinetics Analysis of Microwave Pyrolysis of Dunaliella salina Using Composite Additives. Bioenerg. Res. 13, 1205–1220 (2020). https://doi.org/10.1007/s12155-020-10150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10150-7

Keywords

Navigation