Skip to main content
Log in

Many-Spin Entanglement in Zigzag Spin Chain in Multiple Quantum NMR

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Many-spin entanglement is investigated in one-dimensional zigzag chains, consisting of up to 12 spins 1/2, with nearest neighbor and next nearest neighbor interactions at high and low temperatures. We consider multiple quantum (MQ) nuclear magnetic resonance (NMR) dynamics. The second moment of the distribution of MQ coherences, which provides a lower bound on the quantum Fisher information, is calculated for different temperatures and evolution times. The dependence of the number of the entangled spins on the temperature and the chain length is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  2. A.M. Kaufman, M.E. Tai, A. Lukin, M. Rispoli, R. Schittko, P.M. Preiss, M. Greiner, Science 353, 794 (2016)

    Article  ADS  Google Scholar 

  3. C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z. Chen, A. Megrant, R. Barends, B. Campbell, B. Chiaro, A. Dunsworth, E. Jeffrey, J. Kelly, J. Mutus, P.J.J. O’Malley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T.C. White, A. Polkovnikov, J.M. Martinis, Nat. Phys. 12, 1037 (2016)

    Article  Google Scholar 

  4. M. Gärtner, P. Hauke, A.M. Rey, Phys. Rev. Lett. 120, 040402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. S.I. Doronin, E.B. Fel’dman, I.D. Lazarev, Phys. Rev. A 100, 022330 (2019)

    Article  ADS  Google Scholar 

  6. J. Baum, M. Munowitz, A.N. Garroway, A. Pines, J. Chem. Phys. 83, 2015 (1985)

    Article  ADS  Google Scholar 

  7. G.B. Furman, V.M. Meerovich, V.L. Sokolovsky, Phys. Rev. A 78, 042301 (2008)

    Article  ADS  Google Scholar 

  8. E.B. Fel’dman, A.N. Pyrkov, A.I. Zenchuk, Philos. Trans. R. Soc. A 370, 4690 (2012)

    Article  ADS  Google Scholar 

  9. G. Tóth, I. Appelaniz, J. Phys. A 47, 424006 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Pezzé, A. Smerzi, M.K. Oberthaler, R. Schmited, P. Treutlein, Rev. Mod. Phys. 90, 035005 (2018)

    Article  ADS  Google Scholar 

  11. J. Baugh, A. Kleinhammes, D. Han, Q. Wang, Y. Wu, Science 294, 1505 (2001)

    Article  ADS  Google Scholar 

  12. E.B. Fel’dman, M.G. Rudavets, J. Exp. Theor. Phys. 98, 207 (2004)

    Article  ADS  Google Scholar 

  13. E.B. Fel’dman, M.G. Rudavets, JETP Lett. 81, 47 (2005)

    Article  ADS  Google Scholar 

  14. E.I. Kuznetsova, E.B. Fel’dman, J. Exp. Theor. Phys. 102, 882 (2006)

    Article  ADS  Google Scholar 

  15. W.H. Zachariasen, Kristallogr. Mineral. Petrogr. 76, 289–302 (1931)

    Google Scholar 

  16. G. Cho, J.P. Yesinowski, J. Phys. Chem. 100, 157716 (1996)

    Google Scholar 

  17. G.D. Gatta, G.J. McIntyre, G. Bromiley, A. Guastoni, F. Nestola, Am. Mineral. 97, 1891–1897 (2012)

    Article  ADS  Google Scholar 

  18. S.I. Doronin, I.I. Maksimov, E.B. Fel’dman, J. Exp. Theor. Phys. 91, 597 (2000)

    Article  ADS  Google Scholar 

  19. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961)

    Google Scholar 

  20. M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids (Clarendon Press, Oxford, 1970)

    Google Scholar 

  21. A.K. Khitrin, Chem. Phys. Lett. 274, 217 (1997)

    Article  ADS  Google Scholar 

  22. J. Liu, H.-N. Xiong, F. Song, X. Wang, Phys. A 410, 167–173 (2014)

    Article  MathSciNet  Google Scholar 

  23. J. Liu, H. Yuan, X.-M. Lu, X. Wang, J. Phys. A Math. Theor. 53, 023001 (2020)

    Article  ADS  Google Scholar 

  24. P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezzé, A. Smerzi, Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  25. J. Liu, H. Yuan, Phys. Rev. A 96, 042114 (2017)

    Article  ADS  Google Scholar 

  26. J. Liu, H. Yuan, Phys. Rev. A 96, 012117 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

This work was performed as a part of a state task, State Registration no. 0089-2019-0002. This work was supported by the Russian Foundation for Basic Research, Grant no. 20-03-00147. I.L. acknowledges support from the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS no. 19-1-5-130-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Bochkin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkin, G.A., Vasil’ev, S.G., Doronin, S.I. et al. Many-Spin Entanglement in Zigzag Spin Chain in Multiple Quantum NMR. Appl Magn Reson 51, 667–678 (2020). https://doi.org/10.1007/s00723-020-01206-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01206-0

Navigation