Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 19, 2020

Preparation and characterization of chitosan grafted poly(lactic acid) films for biomedical composites

  • Tonmoy Debnath , Md. Sazedul Islam EMAIL logo , Sirajul Hoque , Papia Haque and Mohammed Mizanur Rahman

Abstract

Polymer composites offer a great advantage in biomedical field over the traditional materials used like, metal, ceramics, or polymer alone. Polymer composites provide tailor-made facilities to design required physiological and mechanical properties in biomedical products. Poly(lactic acid) (PLA) is a popular aliphatic polyester used in various biomedical products because they have a renewable source and after resorption they enter well into the Krebs cycle of the human body. However, PLA suffers from hydrolysis and subsequent weight loss in aqueous environment. To improve the hydrolytic properties of hydrophobic PLA and to incorporate the biocompatibility from chitosan (CS) into it, in this study CS has been grafted onto PLA film. CS with 78% of degree of deacetylation and viscosity average molecular weight of about 8,31,760 Da was grafted onto hydrolyzed PLA film surface. Kjeldahl analysis confirmed the attachment of CS onto the PLA films. From thermal stability analysis, it was observed that percentage of weight retention at 600°C of the CS-g-PLA was around 15% higher than that of pure PLA. The mechanical properties of final CS-grafted-PLA composites showed more resistance to hydrolytic degradation than that of pure PLA film.

Acknowledgments

The authors acknowledge their affiliated institutions.

  1. Conflict of interest statement: The authors declare they have no conflict of interest.

References

[1] Shikinami Y, Okuno M. Biomaterials 1999, 20, 859–877.10.1016/S0142-9612(98)00241-5Search in Google Scholar

[2] Mikos AG, Sarakinos G, Vacanti JP, Langer RS, Cima LG. Google Patents. 1996.Search in Google Scholar

[3] Sipe JD. Ann. NY Acad. Sci. 2002, 961, 1–9.10.1111/j.1749-6632.2002.tb03040.xSearch in Google Scholar

[4] Mow VC, Ratcliffe A, Poole AR. Biomaterials 1992, 13, 67–97.10.1016/0142-9612(92)90001-5Search in Google Scholar

[5] Yarlagadda PKDV, Chandrasekharan M, Shyan JYM. Bio-med. Mater. Eng. 2005, 15, 159–177.Search in Google Scholar

[6] Lane NE. Nat. Clin. Pract. Rheumatol. 2006, 2, 562–569.10.1038/ncprheum0298Search in Google Scholar

[7] Vert M, Li SM, Spenlehauer G, Guerin P. J. Mater. Sci. Mater. Med. 1992, 3, 432–446.10.1007/BF00701240Search in Google Scholar

[8] Bruder SP, Jaiswal N, Haynesworth SE. J. Cell. Biochem. 1997, 64, 278–294.10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-FSearch in Google Scholar

[9] Garlotta D. J. Polym. Environ. 2001, 9, 63–84.10.1023/A:1020200822435Search in Google Scholar

[10] Drumright RE, Gruber PR, Henton DE. Adv. Mater. 2000, 12, 1841–1846.10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-ESearch in Google Scholar

[11] Nampoothiri KM, Nair NR, John RP. Bioresour. Technol. 2010, 101, 8493–8501.10.1016/j.biortech.2010.05.092Search in Google Scholar

[12] Rahman MM, Shahruzzaman M, Islam MS, Khan MN, Haque P.J. Polym. Eng. 2019, 39, 134–142.10.1515/polyeng-2018-0103Search in Google Scholar

[13] Simionato JI, Villalobos LDG, Bulla MK, Coró FAG, Garcia JC. Acta Sci. Technol. 2014, 36, 693–698.10.4025/actascitechnol.v36i4.24428Search in Google Scholar

[14] Kumar MNVR. React. Funct. Polym. 2000, 46, 1–27.10.1016/S1381-5148(00)00038-9Search in Google Scholar

[15] Islam MS, Haque P, Rashid TU, Khan MN, Mallik AK, Khan MNI, Khan M, Rahman MM. J. Mater. Sci. Mater. Med. 2017, 28, 55.10.1007/s10856-017-5859-xSearch in Google Scholar

[16] Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R. Progr. Polym. Sci. 2014, 39, 1644–1667.10.1016/j.progpolymsci.2014.02.008Search in Google Scholar

[17] Elsawy MA, Kim K-H, Park J-W, Deep A. Renew. Sustain. Energy Rev. 2017, 79, 1346–1352.10.1016/j.rser.2017.05.143Search in Google Scholar

[18] Rashid TU, Rahman MM, Kabir S, Shamsuddin SM, Khan MA. Polym. Int. 2012, 61, 1302–1308.10.1002/pi.4207Search in Google Scholar

[19] Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ. Biomacromolecules 2004, 5, 463–473. Macromol. Chem. Phys. 1985, 186, 1671–1677.10.1021/bm0343040Search in Google Scholar

[20] Domszy JG, Roberts GAF. Macromol. Chem. Phys. 1985, 186, 1671–1677.10.1002/macp.1985.021860815Search in Google Scholar

[21] Hwang JK, Shin HH. Kor.-Austr. Rheol. J. 2000, 12, 175–179.Search in Google Scholar

[22] Kasaai MR, Arul J, Charlet GR. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 2591–2598.10.1002/1099-0488(20001001)38:19<2591::AID-POLB110>3.0.CO;2-6Search in Google Scholar

[23] Xiao X. Polym. Test. 2008, 27, 164–178.10.1016/j.polymertesting.2007.09.010Search in Google Scholar

[24] Labconco C. A Guide to Kjeldahl Nitrogen Determination Methods and Apparatus. Labconco Corporation: Houston, TX, USA, 1998.Search in Google Scholar

[25] Brunner E, Ehrlich H, Schupp P, Hedrich R, Hunoldt S, Kammer M, Machill S, Paasch S, Bazhenov VV, Kurek DV. J. Struct. Biol. 2009, 168, 539–547.10.1016/j.jsb.2009.06.018Search in Google Scholar

[26] Focher B, Naggi A, Torri G, Cosani A, Terbojevich M. Carbohydr. Polym. 1992, 17, 97–102.10.1016/0144-8617(92)90101-USearch in Google Scholar

[27] Paulino AT, Simionato JI, Garcia JC, Nozaki J. Carbohydr. Polym. 2006, 64, 98–103.10.1016/j.carbpol.2005.10.032Search in Google Scholar

[28] Wu T, Zivanovic S, Draughon FA, Conway WS, Sams CE. J. Agric. Food Chem. 2005, 53, 3888–3894.10.1021/jf048202sSearch in Google Scholar PubMed

[29] Li Q, Dunn ET, Grandmaison EW, Goosen MFA. J. Bioactive Compat. Polym. 1992, 7, 370–397.10.1177/088391159200700406Search in Google Scholar

[30] Au HT, Pham LN, Vu THT, Park JS. Macromol. Res. 2012, 20, 51–58.10.1007/s13233-012-0010-9Search in Google Scholar

[31] Xu J, Zhang J, Gao W, Liang H, Wang H, Li J. Mater. Lett. 2009, 63, 658–660.10.1016/j.matlet.2008.12.014Search in Google Scholar

[32] Zhou ZF, Huang GQ, Xu WB, Ren FM. Exp. Polym. Lett. 2007, 1, 734–739.10.3144/expresspolymlett.2007.101Search in Google Scholar

[33] Auras R, Harte B, Selke S. Macromol. Biosci. 2004, 4, 835–864.10.1002/mabi.200400043Search in Google Scholar PubMed

[34] Coates J. Encyclopedia of Analytical Chemistry, Interpretation of infrared spectra, a practical approach. Wiley: Chichester, 2000, 10815–10837.Search in Google Scholar

[35] Jaworska M, Sakurai K, Gaudon P, Guibal E. Polym. Int. 2003, 52, 198–205.10.1002/pi.1159Search in Google Scholar

[36] Freier T, Koh HS, Kazazian K, Shoichet MS. Biomaterials 2005, 26, 5872–5878.10.1016/j.biomaterials.2005.02.033Search in Google Scholar

[37] Prashanth KVH, Kittur FS, Tharanathan RN. Carbohydr. Polym. 2002, 50, 27–33.10.1016/S0144-8617(01)00371-XSearch in Google Scholar

[38] Wenling C, Duohui J, Jiamou L, Yandao G, Nanming Z, Xiufang Z. J. Biomater. Appl. 2005, 20, 157–177.10.1177/0885328205049897Search in Google Scholar

[39] Moore GK, Roberts GAF. Int. J. Biol. Macromol. 1980, 2, 115–116.10.1016/0141-8130(80)90040-9Search in Google Scholar

Received: 2019-10-14
Accepted: 2020-02-14
Published Online: 2020-03-19
Published in Print: 2020-04-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2019-0312/html
Scroll to top button