Skip to main content
Log in

Performance of the MPD Detector in the Study of the Strangeness to Entropy Ratio in Heavy-Ion Collisions at the NICA Accelerator Complex

  • METHODS OF PHYSICAL EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Strangeness production in heavy-ion collisions is one of the main goals of the scientific program at the NICA accelerator complex. The MPD detector is designed to study the properties of strongly interacting matter at extreme baryon densities. In this article, the MPD performance to measure the excitation function of the strangeness to entropy ratio in central Au + Au collisions is reported. The investigation has been performed at the Laboratory of High Energy Physics, JINR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, “The order of the quantum chromodynamics transition predicted by the standard model of particle physics,” Nature (London, U.K.) 443, 675 (2006).

    Article  ADS  Google Scholar 

  2. J. Berges and K. Rajagopal, “Color superconductivity and chiral symmetry restoration at non-zero baryon density and temperature,” Nucl. Phys. B 538, 215 (1999).

    Article  ADS  Google Scholar 

  3. V. D. Kekelidze, R. Lednicky, V. A. Matveev, et al., “Three stages of the NICA accelerator complex,” Eur. Phys. J. A 52, 211 (2016).

    Article  ADS  Google Scholar 

  4. V. Golovatyuk, V. Kekelidze, V. Kolesnikov, et al., “The multi-purpose detector (MPD) of the collider experiment,” Eur. Phys. J. A 52, 212 (2016).

    Article  ADS  Google Scholar 

  5. C. Alt et al. (NA49 Collab.), “Pion and kaon production in central Pb + Pb collisions at 20A and 30A GeV: Evidence for the onset of deconfinement,” Phys. Rev. C 77, 024903 (2008).

    Article  ADS  Google Scholar 

  6. B. I. Abelev (STAR Collab.), “Enhanced strange baryon production in Au + Au collisions compared to p + p at √s(NN) = 200 GeV,” Phys. Rev. C 77, 044908 (2008).

    Article  ADS  Google Scholar 

  7. W. Ehehalt and W. Cassing, “Relativistic transport approach for nucleus nucleus collisions from SIS to SPS energies,” Nucl. Phys. A 602, 449 (1996).

    Article  ADS  Google Scholar 

  8. A. Palmese, W. Cassing, E. Seifert, et al., “Chiral symmetry restoration in heavy-ion collisions at intermediate energies,” Phys. Rev. C 94, 044912 (2016).

    Article  ADS  Google Scholar 

  9. K. U. Abraamyan et al. (MPD Collab.), “The MPD detector at the NICA heavy-ion collider at JINR,” Nucl. Instrum. Methods Phys. Res., Sect. A 628, 99 (2011).

    Google Scholar 

  10. J. Aichelin, E. Bratkovskaya, A. le Fevre, et al., “Parton-hadron-quantum-molecular dynamics (PHQMD), a novel microscopic N-body transport approach for heavy-ion collisions, dynamical cluster formation and hypernuclei production,” arXiv:1907.03860v2.

  11. W. Cassing and E. L. Bratkovskaya, “Parton-hadron-string dynamics: An off-shell transport approach for relativistic energies,” Nucl. Phys. A 831, 215 (2009).

    Article  ADS  Google Scholar 

  12. J. Aichelin, “Quantum molecular dynamics: A dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions,” Phys. Rep. 202, 233 (1991).

    Article  ADS  Google Scholar 

  13. W. Cassing, “From Kadanoff-Baym dynamics to off-shell parton transport,” Eur. Phys. J. 168, 3 (2009);

    Google Scholar 

  14. Nucl. Phys. A 795, 70 (2007).

  15. R. Fruhwirth, “Application of Kalman filtering to track and vertex fitting,” Nucl. Instrum. Methods Phys. Res., Sect. A 262, 444 (1987).

    Google Scholar 

  16. J. Drnoyan, E. Levterova, V. Vasendina, A. Zinchenko, and D. Zinchenko, “Perspectives of multistrange hyperon study at NICA/MPD from realistic Monte Carlo simulation,” Phys. Part. Nucl. Lett. 17, 32 (2020).

    Article  Google Scholar 

  17. E. Schnedermann, J. Sollfrank, and U. Heinz, “Thermal phenomenology of hadrons from 200A GeV S+S collisions,” Phys. Rev. C 48, 2462 (1993).

    Article  ADS  Google Scholar 

  18. C. Alt et al. (NA49 Collab.), “Energy dependence of Λ and Ξ production in central Pb + Pb collisions at 20A, 30A, 40A, 80A, and 158A GeV measured at the CERN super proton synchrotron,” Phys. Rev. C 78, 034918 (2008).

    Article  ADS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR according to the research project 18-02-40037 and research project 18‑02-40060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kolesnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, V., Kireyeu, V., Mudrokh, A. et al. Performance of the MPD Detector in the Study of the Strangeness to Entropy Ratio in Heavy-Ion Collisions at the NICA Accelerator Complex. Phys. Part. Nuclei Lett. 17, 358–369 (2020). https://doi.org/10.1134/S1547477120030085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477120030085

Navigation