Skip to main content
Log in

A Unified Empirical Model for Quasielastic Interactions of Neutrino and Antineutrino with Nuclei

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We propose a simple empirical model for evaluating the quasielastic neutrino- and antineutrino-nucleus cross sections, based on the conventional relativistic Fermi-gas model and the notion of running (dipole) axial-vector mass of the nucleon driven by two adjustable parameters (one of which is the ordinary axial mass of the nucleon). The suggested approach provides reasonable agreement with available consistent accelerator data on total, differential, and double differential quasielastic and quasielastic-like cross sections for different nuclear targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. In some cases the result is dependent on extraction methods and data subsets used in the analyses; for example, in the recent T2K analyses [51], the effective \({{M}_{A}}\) parameter was measured to be \(1.26_{{ - 0.18}}^{{ + 0.21}}\) GeV or \(1.43_{{ - 0.22}}^{{ + 0.28}}\) GeV by using, respectively, the absolute or shape-only \({{p}_{\mu }} - \cos{{\theta }_{\mu }}\) event distributions. In Fig. 2 we show the first value only.

  2. It is already implemented into the GENIE neutrino generator (version 2.11.0 and higher) as an option.

  3. See [109] for a more sophisticated treatment of these matters.

  4. Recall that the \({{\nu }_{\mu }}\)D cross sections are calculated using the Singh-Arenhovel model [61]. The estimated values of \({{\left\langle {{{E}_{\nu }}} \right\rangle }_{{{\text{int}}}}}\) are almost insensitive to variations of \({{M}_{0}}\) within \(2\sigma \) uncertainty.

  5. The expected difference between the cross sections (per neutron) on argon and carbon is fully negligible at energies under consideration.

  6. To minimize the total uncertainty, we use the data for the real MINER\(\nu \)A and NOMAD targets and do not use those converted to carbon. We mention in passing that our estimations of \(M_{A}^{{{\text{RFG}}}}\) somewhat different from those reported by the experimenters since we use different input parameters and models for the vector form factors.

  7. These tunes are based on the same physics, except for the applied FSI model: hA 2018 and hN 2018 for, respectively, G18_10a_02_11a and G18_10b_02_11a. Since the differences in the calculated cross sections due to the FSI effects forecast by the two models are comparatively small, we illustrate in the figures only one FSI model; the quantitative statistical characteristics for both models are listed in Tables 1–4.

REFERENCES

  1. E. Fernandez-Martinez and D. Meloni, “Importance of nuclear effects in the measurement of neutrino oscillation parameters,” Phys. Lett. B 697, 477–481 (2011).

    ADS  Google Scholar 

  2. D. Meloni, “Impact of nuclear effects in the measurement of neutrino oscillation parameters,” AIP Conf. Proc. 1405, 65–70 (2011).

    ADS  Google Scholar 

  3. S. Chauhan, M. Sajjad Athar, and S. K. Singh, “Nuclear effects in neutrino oscillation experiments,” AIP Conf. Proc. 1382, 38–41 (2011).

    ADS  Google Scholar 

  4. D. Meloni and M. Martini, “Revisiting the T2K data using different models for the neutrino-nucleus cross sections,” Phys. Lett. B 716, 186–192 (2012).

    ADS  Google Scholar 

  5. O. Benhar and N. Rocco, “Nuclear effects in neutrino interactions and their impact on the determination of oscillation parameters,” Adv. High Energy Phys. 2013, 912702 (2013).

    MATH  Google Scholar 

  6. D. Meloni, “Impact of nuclear effects in the measurement of neutrino oscillation parameters,” J. Phys.: Conf. Ser. 408, 012024 (2013).

    Google Scholar 

  7. P. Coloma and P. Huber, “Impact of nuclear effects on the extraction of neutrino oscillation parameters,” Phys. Rev. Lett. 111, 221802 (2013).

    ADS  Google Scholar 

  8. P. Coloma, P. Huber, C.-M. Jen, and C. Mariani, “Neutrino-nucleus interaction models and their impact on oscillation analyses,” Phys. Rev. D 89, 073015 (2014).

    ADS  Google Scholar 

  9. C.-M. Jen, A. Ankowski, O. Benhar, A. P. Furmanski, L. N. Kalousis, and C. Mariani, “Numerical implementation of lepton-nucleus interactions and its effect on neutrino oscillation analysis,” Phys. Rev. D 90, 093004 (2014).

    ADS  Google Scholar 

  10. P. Stowell, C. Wilkinson, and S. Cartwright, “Effect of cross-section models on the validity of sterile neutrino mixing limits,” arXiv:1501.02142 [hep-ph] (2015).

  11. M. Ericson and M. Martini, “Neutrino versus antineutrino cross sections and violation,” Phys. Rev. C 91, 035501 (2015).

    ADS  Google Scholar 

  12. A. M. Ankowski, O. Benhar, C. Mariani, and E. Vagnoni, “Effect of the cross-section uncertainties on an analysis of neutrino oscillations,” Phys. Rev. D 93, 113004 (2016).

    ADS  Google Scholar 

  13. L. D. Kolupaeva, K. S. Kuzmin, O. N. Petrova, and I. M. Shandrov, “Some uncertainties of neutrino oscillation effect in the NOvA experiment,” Mod. Phys. Lett. A 31, 1650077 (2016).

    ADS  Google Scholar 

  14. A. M. Ankowski and C. Mariani, “Systematic uncertainties in long-baseline neutrino-oscillation experiments,” J. Phys. G 44, 054001 (2017).

    ADS  Google Scholar 

  15. K. S. Kuzmin, V. A. Naumov, and O. N. Petrova, “Running axial mass of the nucleon for the NOvA experiment,” Acta Phys. Polon. Suppl. 9, 795–796 (2016).

    Google Scholar 

  16. R. L. Kustom, D. E. Lundquist, T. B. Novey, A. Yokosawa, and F. Chilton, “Quasielastic neutrino scattering,” Phys. Rev. Lett. 22, 1014–1017 (1969).

    ADS  Google Scholar 

  17. W. A. Mann et al., “Study of the reaction \(\nu + n \to {{\mu }^{ - }} + p\),” Phys. Rev. Lett. 31, 844–847 (1973).

    ADS  Google Scholar 

  18. D. H. Perkins, “Review of neutrino experiments,” in Proceedings of the International Symposium on Lepton and Photon Interactions at High Energies, Stanford, CA, August 21–27,1975, Ed. by T. W. Kirk (SLAC, Stanford, 1976), pp. 571–603.

  19. S. J. Barish et al., “Study of neutrino interactions in hydrogen and deuterium: Description of the experiment and study of the reaction \(\nu + d \to {{\mu }^{ - }} + p + {{p}_{s}}\),” Phys. Rev. D 16, 3103–3121 (1977).

    ADS  Google Scholar 

  20. K. L. Miller et al., “Study of the reaction muon-neutrino \({{\nu }_{\mu }}d \to {{\mu }^{ - }}p{{p}_{s}}\),” Phys. Rev. D 26, 537–542 (1982).

    ADS  Google Scholar 

  21. A. M. Cnops et al., “Neutrino-deuterium reactions in the 7-ft bubble chamber,” in Proceedings of the Topical Conference on Neutrino Physics at Accelerators, Oxford, UK, July 4–7,1978, Ed. by A. G. Michette and P. B. Renton (Science Research Council, Rutherford Laboratory, Chilton, UK, 1978), pp. 62–67.

  22. G. K. Fanourakis, L. K. Resvanis, G. A. Grammatikakis, P. Tsilimigras, A. Vayaki, U. Camerini, W. F. Fry, R. J. Loveless, J. H. Mapp, and D. D. Reeder, “Study of low-energy anti-neutrino interactions on protons,” Phys. Rev. D 21, 562–568 (1980).

    ADS  Google Scholar 

  23. N. J. Baker et al., “Quasielastic neutrino scattering: A measurement of the weak nucleon axial vector form-factor,” Phys. Rev. D 23, 2499–2505 (1981).

    ADS  Google Scholar 

  24. L. A. Ahrens et al., “A study of the axial vector form-factor and second class currents in anti-neutrino quasielastic scattering,” Phys. Lett. B 202, 284–288 (1988).

    ADS  Google Scholar 

  25. T. Kitagaki et al., “Study of neutrino \(\nu d \to {{\mu }^{ - }}p{{p}_{s}}\) and \(\nu d \to {{\mu }^{ - }}{{\Delta }^{{ + + }}}(1232){{n}_{s}}\) using the BNL 7-foot deuterium filled bubble chamber,” Phys. Rev. D 42, 1331–1338 (1990).

    ADS  Google Scholar 

  26. T. Kitagaki et al., “High-energy quasielastic \({{\nu }_{\mu }}n \to {{\mu }^{ - }}p\) scattering in deuterium,” Phys. Rev. D 28, 436–442 (1983).

    ADS  Google Scholar 

  27. A. E. Asratian et al., “Anti-neutrinos quasielastic scattering in neon and total cross-sections in the energy interval 10-50 GeV,” Sov. J. Nucl. Phys. 39, 392–395 (1984).

    Google Scholar 

  28. A. E. Asratian et al., “Total anti-neutrinos nucleon charged current cross-section in the energy range 10-50 GeV,” Phys. Lett. B 137, 122–124 (1984).

    ADS  Google Scholar 

  29. V. V. Ammosov et al., “Neutral strange particle exclusive production in charged current high-energy anti-neutrino interactions,” Z. Phys. C 36, 377–381 (1987).

    ADS  Google Scholar 

  30. A. A. Aguilar-Arevalo et al., “First measurement of the muon neutrino charged current quasielastic double differential cross section,” Phys. Rev. D 81, 092005 (2010).

    ADS  Google Scholar 

  31. M. Betancourt, “Study of the quasi-elastic scattering in the NOvA detector prototype,” Ph.D. Thesis (Minnesota Univ., 2013).

  32. M. Holder et al., “Spark-chamber study of elastic neutrino interactions,” Nuovo Cim. A 57, 338–354 (1968).

    ADS  Google Scholar 

  33. C. Franzinetti, “Neutrino interactions in the CERN heavy liquid bubble chamber,” CERN Yellow Report No. 66-13 (CERN, Geneva, 1965); Lecture at the Meeting of the American Physical Society, Chicago, October 28, 1965.

  34. E. C. M. Young, “High-energy neutrino interactions,” Tech. Rep., CERN Yellow Report No. 67-12 (CERN, 1967).

  35. A. Orkin-Lecourtois and C. A. Piketty, “The quasi-elastic events of the CERN bubble chamber neutrino experiment and the determination of the axial form factor,” Nuovo Cim. A 50, 927–934 (1967).

    ADS  Google Scholar 

  36. I. Budagov et al., “A study of the elastic neutrino process \(\nu + n \to {{\mu }^{ - }} + p\),” Lett. Nuovo Cim. 2, 689–695 (1969).

    Google Scholar 

  37. S. Bonetti, G. Carnesecchi, D. Cavalli, P. Negri, A. Pullia, M. Rollier, F. Romano, and R. Schira, “Study of quasielastic reactions of neutrino and anti-neutrino in Gargamelle,” Nuovo Cim. A 38, 260–270 (1977).

    ADS  Google Scholar 

  38. M. Rollier, “Recent results from the Gargamelle anti-neutrino propane experiment at the CERN PS,” in Neutrino Physics at Accelerators, Topical Conference on Neutrino Physics, July 4–7,1978, Ed. by A. G. Michette and P. B. Renton (Science Res. Council, Rutherford Laboratory, Oxford, England, UK, 1978), pp. 68–74.

  39. N. Armenise et al., “Charged current elastic anti-neutrino interactions in propane,” Nucl. Phys. B 152, 365–375 (1979).

    ADS  Google Scholar 

  40. M. Pohl et al., “Experimental study of the reaction \(\nu n \to {{\mu }^{ - }}p\),” Lett. Nuovo Cim. 26, 332–336 (1979).

    Google Scholar 

  41. D. Allasia et al., “Investigation of exclusive channels in \({\nu \mathord{\left/ {\vphantom {\nu {\bar {\nu }}}} \right. \kern-0em} {\bar {\nu }}}\)-deuteron charged current interactions,” Nucl. Phys. B 343, 285–309 (1990).

    ADS  Google Scholar 

  42. V. V. Lyubushkin et al., “A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment,” Eur. Phys. J. C 63, 355–381 (2009).

    ADS  Google Scholar 

  43. V. V. Makeev et al., “Quasielastic neutrino scattering \({{\nu }_{\mu }} + n \to {{\mu }^{ - }} + p\) at 2–20 GeV in bubble chamber SKAT,” JETP Lett. 34, 397–400 (1981).

    ADS  Google Scholar 

  44. H. J. Grabosch et al., “Study of quasielastic reactions \(\nu n \to {{\mu }^{ - }}p\) and \(\bar {\nu }p \to {{\mu }^{ + }}n\) in bubble chamber SKAT at 3-20 GeV,” Sov. J. Nucl. Phys. 47, 1630–1634 (1988).

    Google Scholar 

  45. J. Brunner et al., “Quasielastic nucleon and hyperon production by neutrinos and anti-neutrinos with energies below 30 GeV,” Z. Phys. C 45, 551–555 (1990).

    ADS  Google Scholar 

  46. V. V. Ammosov et al., “Investigation of neutrino interactions using the bubble chamber SKAT,” Sov. J. Part. Nucl. 23, 283–316 (1992).

    Google Scholar 

  47. S. V. Belikov et al., “Quasielastic neutrino and anti-neutrinos interaction at the Serpukhov accelerator,” Tech. Rep. IFVE-81-146 (Inst. High Energy Phys., Serpukhov, 1981).

  48. S. V. Belikov et al., “Quasielastic \({{\nu }_{\mu }}n\) scattering at 3–30 GeV energy,” Sov. J. Nucl. Phys. 35, 35–39 (1982).

    Google Scholar 

  49. S. V. Belikov, A. A. Volkov, V. I. Kochetkov, A. I. Mukhin, Yu. M. Sviridov, and K. E. Shestermanov, “Restraints on parameters of oscillations of muon neutrinos from quasielastic scattering data,” Sov. J. Nucl. Phys. 41, 589 (1985).

    Google Scholar 

  50. S. V. Belikov et al., “Quasielastic neutrino and anti-neutrinos scattering: Total cross-sections, axial vector form-factor,” Z. Phys. A 320, 625–633 (1985).

  51. K. Abe et al., “Measurement of the \({{\nu }_{\mu }}\) charged-current quasielastic cross section on carbon with the ND280 detector at T2K,” Phys. Rev. D 92, 112003 (2015).

    ADS  Google Scholar 

  52. V. Bernard, L. Elouadrhiri, and U.-G. Meißner, “Axial structure of the nucleon: Topical review,” J. Phys. G 28, R1-R35 (2002).

    ADS  Google Scholar 

  53. A. Bodek, S. E. Avvakumov, R. K. Bradford, Jr., and H. S. Budd, “Modeling atmospheric neutrino interactions: Duality constrained parameterization of vector and axial nucleon form factors,” arXiv:0708.1827 [hep-ex] (2007).

  54. A. Bodek, S. E. Avvakumov, R. K. Bradford, Jr., and H. S. Budd, “Vector and axial nucleon form factors: A duality constrained parameterization,” Eur. Phys. J. C 53, 349–354 (2008).

    ADS  Google Scholar 

  55. A. Bodek, S. E. Avvakumov, R. K. Bradford, Jr., and H. S. Budd, “Extraction of the axial nucleon form-factor from neutrino experiments on deuterium,” J. Phys.: Conf. Ser. 110, 082004 (2008).

    Google Scholar 

  56. K. S. Kuzmin, V. V. Lyubushkin, and V. A. Naumov, “Fine-tuning parameters to describe the total charged-current neutrino-nucleon cross section,” Phys. At. Nucl. 69, 1857–1871 (2006).

    Google Scholar 

  57. K. S. Kuzmin, V. V. Lyubushkin, and V. A. Naumov, “Axial masses in quasielastic neutrino scattering and single-pion neutrinoproduction on nucleons and nuclei,” Acta Phys. Polon. B 37, 2337–2348 (2006).

  58. K. S. Kuzmin, V. V. Lyubushkin, and V. A, “Naumov, "Quasielastic axial-vector mass from experiments on neutrino-nucleus scattering,” Eur. Phys. J. C 54, 517–538 (2008).

    ADS  Google Scholar 

  59. S. K. Singh, “The effect of final state interactions and deuteron binding in \(\nu d \to {{\mu }^{ - }}pp{\text{*}}\),” Nucl. Phys. B 36, 419–435 (1972).

    ADS  Google Scholar 

  60. S. K. Singh, “Quasielastic neutrino-deuteron scattering,” Phys. Rev. D 10, 988–992 (1974).

    ADS  Google Scholar 

  61. S. K. Singh and H. Arenhovel, “Pion exchange current effects in \({{\nu }_{\mu }} + d \to {{\mu }^{ - }} + p + p\),” Z. Phys., A 324, 347–354 (1986).

  62. R. A. Smith and E. J. Moniz, “Neutrino reactions on nuclear targets,” Nucl. Phys. B 43, 605–622 (1972).

    ADS  Google Scholar 

  63. A. A. Aguilar-Arevalo et al., “First measurement of the muon antineutrino double-differential charged-current quasielastic cross section,” Phys. Rev. D 88, 032001 (2013).

    ADS  Google Scholar 

  64. J. L. Alcaraz-Aunion and J. Walding, “Measurement of the \({{\nu }_{{mu}}}\)-CCQE cross section in the SciBooNE experiment,” AIP Conf. Proc. 1189, 145–150 (2009).

    ADS  Google Scholar 

  65. J. L. Alcaraz Aunion, “Measurement of the absolute \({{\nu }_{\mu }}\)-CCQE cross section at the SciBooNE experiment,” Ph.D. Thesis (IFAE, Barcelona, 2010).

  66. G. A. Fiorentini et al., “Measurement of muon neutrino quasielastic scattering on a hydrocarbon target at Eν ~ 3.5 GeV,” Phys. Rev. Lett. 111, 022502 (2013).

    ADS  Google Scholar 

  67. L. Fields et al., “Measurement of muon antineutrino quasielastic scattering on a hydrocarbon target at Eν ~ 3.5 GeV,” Phys. Rev. Lett. 111, 022501 (2013).

    ADS  Google Scholar 

  68. T. Walton et al., “Measurement of muon plus proton final states in \({{\nu }_{\mu }}\) interactions on hydrocarbon at 〈Eν〉 = 4.2 GeV,” Phys. Rev. D 91, 071301 (2015).

    ADS  Google Scholar 

  69. P. Adamson et al., “Study of quasielastic scattering using charged-current \({{\nu }_{\mu }}\)-iron interactions in the MINOS near detector,” Phys. Rev. D 91, 012005 (2015).

    ADS  Google Scholar 

  70. K. Abe et al., “Measurement of the inclusive \({{\nu }_{\mu }}\) charged current cross section on carbon in the near detector of the T2K experiment,” Phys. Rev. D 87, 092003 (2013).

    ADS  Google Scholar 

  71. D. Hadley, “Measurement of the \({{\nu }_{\mu }}\) CCQE cross section with the ND280 detector at T2K,” PoS(EPS-HEP 2013) 008.

  72. K. Abe et al., “Measurement of double-differential muon neutrino charged-current interactions on C8H8 without pions in the final state using the T2K off-axis beam, Phys. Rev. D 93, 112012 (2016).

    ADS  Google Scholar 

  73. K. Abe et al., “Characterization of nuclear effects in muon-neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charged-current pionless interactions at T2K,” Phys. Rev. D 98, 032003 (2018).

    ADS  Google Scholar 

  74. K. Abe et al., “Measurement of the \({{\nu }_{\mu }}\) charged current quasielastic cross section on carbon with the T2K on-axis neutrino beam,” Phys. Rev. D 91, 112002 (2015).

    ADS  Google Scholar 

  75. A. V. Butkevich and D. Perevalov, “Determination of the axial nucleon form factor from the MiniBooNE data,” Phys. Rev. D 89, 053014 (2014).

    ADS  Google Scholar 

  76. R. W. Gran et al., “Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions,” Phys. Rev. D 74, 052002 (2006).

    ADS  Google Scholar 

  77. X. Espinal and F. N, “Sánchez, "Measurement of the axial vector mass in neutrino-carbon interactions at K2K,” AIP Conf. Proc. 967, 117–122 (2007).

    ADS  Google Scholar 

  78. A. M. Sajjad, F. Akbar, A. M. Rafi, S. Chauhan, S. K. Singh, and F. Zaidi, “Lepton production cross sections in quasielastic \({\nu \mathord{\left/ {\vphantom {\nu {\bar {\nu }}}} \right. \kern-0em} {\bar {\nu }}} - \)A scattering,” arXiv: 1611.07166 [nucl-th] (2016).

  79. K. M. Graczyk, “Local density and the RPA corrections in charge current quasielastic neutrino on oxygen, argon and iron scattering,” nucl-th/0401053 (2004).

  80. A. M. Ankowski, “Consistent analysis of neutral- and charged-current neutrino scattering off carbon,” Phys. Rev. C 86, 024616 (2012).

    ADS  Google Scholar 

  81. M. V. Ivanov, A. N. Antonov, J. A. Caballero, G. D. Megias, M. B. Barbaro, E. Moya de Guerra, and J. M. Udías, “Charged-current quasielastic neutrino cross sections on 12C with realistic spectral and scaling functions,” Phys. Rev. C 89, 014607 (2014).

    ADS  Google Scholar 

  82. A. Bodek, M. E. Christy, and B. Coopersmith, “Effective spectral function for quasielastic scattering on nuclei,” Eur. Phys. J. C 74, 3091 (2014).

    ADS  Google Scholar 

  83. J. E. Sobczyk, “Intercomparison of lepton-nucleus scattering models in the quasielastic region,” Phys. Rev. C 96, 045501 (2017).

    ADS  Google Scholar 

  84. M. V. Ivanov, A. N. Antonov, G. D. Megias, J. A. Caballero, M. B. Barbaro, J. E. Amaro, I. Ruiz Simo, T. W. Donnelly, and J. M. Udías, “Realistic spectral function model for charged-current quasielastic-like neutrino and antineutrino scattering cross sections on 12C,” Phys. Rev. C 99, 014610 (2019).

    ADS  Google Scholar 

  85. M. V. Ivanov, A. N. Antonov, G. D. Megias, J. A. Caballero, M. B. Barbaro, J. E. Amaro, I. Ruiz Simo, T. W. Donnelly, and J. M. Udías, “Charged-current quasielastic (anti)neutrino cross sections on 12C with realistic spectral functions including meson-exchange contributions,” AIP Conf. Proc. 2075, 070004 (2019).

    Google Scholar 

  86. M. B. Barbaro, J. E. Amaro, J. A. Caballero, T. W. Donnelly, and J. M. Udías, “Relativistic models for quasi-elastic neutrino-nucleus scattering,” AIP Conf. Proc. 1441, 417–419 (2012).

    ADS  Google Scholar 

  87. A. Meucci and C. Giusti, “Relativistic Green-Cs function model in charged-current quasielastic neutrino and antineutrino scattering at MINERvA kinematics,” Phys. Rev. D 89, 117301 (2014).

    ADS  Google Scholar 

  88. R. W. Gran, J. M. Nieves, F. N. Sánchez, and M. J. Vicente Vacas, “Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV,” Phys. Rev. D 88, 113007 (2013).

    ADS  Google Scholar 

  89. T. van Cuyck, N. Jachowicz, R. González-Jiménez, M. Martini, V. Pandey, J. Ryckebusch, and N. van Dessel, “Influence of short-range correlations in neutrino-nucleus scattering,” Phys. Rev. C 94, 024611 (2016).

    ADS  Google Scholar 

  90. J. M. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, “Two particle-hole excitations in charged current quasielastic antineutrino-nucleus scattering,” Phys. Lett. B 721, 90–93 (2013).

    ADS  Google Scholar 

  91. V. Pandey, N. Jachowicz, J. Ryckebusch, T. van Cuyck, and W. Cosyn, “Quasielastic contribution to antineutrino-nucleus scattering,” Phys. Rev. C 89, 024601 (2014).

    ADS  Google Scholar 

  92. O. D. Lalakulich, U. Mosel, and K. Gallmeister, “Energy reconstruction in quasielastic scattering in the MiniBooNE and T2K experiments,” Phys. Rev. C 86, 054606 (2012).

    ADS  Google Scholar 

  93. U. Mosel and K. Gallmeister, “Muon-neutrino-induced charged current cross section without pions: Theoretical analysis,” Phys. Rev. C 97, 045501 (2018).

    ADS  Google Scholar 

  94. A. Bodek, H. S. Budd, and M. E. Christy, “Neutrino quasielastic scattering on nuclear targets: Parametrizing transverse enhancement (meson exchange currents),” Eur. Phys. J. C 71, 1726 (2011).

    ADS  Google Scholar 

  95. J. T. Sobczyk, “Transverse enhancement model and MiniBooNE charge current quasi-elastic neutrino scattering data,” Eur. Phys. J. C 72, 1850 (2012).

    ADS  Google Scholar 

  96. J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and C. F. Williamson, “Meson-exchange currents and quasielastic neutrino cross sections in the SuperScaling approximation model,” Phys. Lett. B 696, 151–155 (2011).

    ADS  Google Scholar 

  97. R. Gonzalez-Jiménez, G. D. Megias, M. B. Barbaro, J. A. Caballero, and T. W. Donnelly, “Extensions of superscaling from relativistic mean field theory: The SuSAv2 model,” Phys. Rev. C 90, 035501 (2014).

    ADS  Google Scholar 

  98. G. D. Megias, J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and I. Ruiz Simo, “Charged-current neutrino-nucleus reactions within the superscaling meson-exchange current approach,” Phys. Rev. D 94, 093004 (2016).

    ADS  Google Scholar 

  99. G. D. Megias, M. B. Barbaro, J. A. Caballero, and S. Dolan, “Analysis of the MINERvA antineutrino double-differential cross sections within the SuSAv2 model including meson-exchange currents,” Phys. Rev. D 99, 113002 (2019).

    ADS  Google Scholar 

  100. J. E. Amaro, M. B. Barbaro, J. A. Caballero, R. González-Jiménez, G. D. Megias, and I. Ruiz Simo, “Electron- versus neutrino-nucleus scattering,” arXiv:1912.10612 [nucl-th] (2019).

  101. J. E. Amaro, E. Ruiz Arriola, and I. Ruiz Simo, “Scaling violation and relativistic effective mass from quasi-elastic electron scattering: Implications for neutrino reactions,” Phys. Rev. C 92, 054607 (2015).

    ADS  Google Scholar 

  102. I. Ruiz Simo, V. L. Martinez-Consentino, J. E. Amaro, and E. Ruiz Arriola, “Quasielastic charged-current neutrino scattering in the scaling model with relativistic effective mass,” Phys. Rev. D 97, 116006 (2018).

    ADS  Google Scholar 

  103. S. Boyd, S. Dytman, E. Hernandez, J. Sobczyk, and R. Tacik, “Comparison of models of neutrino-nucleus interactions,” AIP Conf. Proc. 1189, 60–73 (2009).

    ADS  Google Scholar 

  104. H. Gallagher, G. Garvey, and G. P. Zeller, “Neutrino-nucleus interactions,” Ann. Rev. Nucl. Part. Sci. 61, 355–378 (2011).

    ADS  Google Scholar 

  105. G. T. Garvey, D. A. Harris, H. A. Tanaka, Rex L. Tayloe, and G. P. Zeller, “Recent advances and open questions in neutrino-induced quasi-elastic scattering and single photon production,” Phys. Rept. 580, 1–45 (2015).

    ADS  Google Scholar 

  106. L. Alvarez-Ruso, Y. Hayato, and J. M. Nieves, “Progress and open questions in the physics of neutrino cross sections at intermediate energies,” New J. Phys. 16, 075015 (2014).

    ADS  Google Scholar 

  107. T. Katori and M. Martini, “Neutrino-nucleus cross sections for oscillation experiments,” J. Phys. G 45, 013001 (2018).

    ADS  Google Scholar 

  108. M. Betancourt et al., “Comparisons and challenges of modern neutrino scattering experiments (TENSIONS2016 Report),” Phys. Rept. 773–774, 1-28 (2018).

    ADS  Google Scholar 

  109. A. Bodek and T. Cai, “Removal energies and final state interaction in lepton nucleus scattering,” Eur. Phys. J. C 79, 293 (2019).

    ADS  Google Scholar 

  110. R. R. Whitney, I. Sick, J. R. Ficenec, R. D. Kephart, and W. P. Trower, “Quasielastic electron scattering,” Phys. Rev. C 9, 2230–2235 (1974).

    ADS  Google Scholar 

  111. P. D. Zimmerman and M. R. Yearian, “Fermi momenta and separation energies obtained from the quasi-elastic scattering of electrons from 48Ca and 40Ca,” Z. Phys., A 278, 291–293 (1976).

  112. E. J. Moniz, I. Sick, R. R. Whitney, J. R. Ficenec, R. D. Kephart, and W. P. Trower, “Nuclear Fermi momenta from quasielastic electron scattering,” Phys. Rev. Lett. 26, 445–448 (1971).

    ADS  Google Scholar 

  113. M. Tanabashi et al., “Review of particle physics,” Phys. Rev. D 98, 030001 (2018).

    ADS  Google Scholar 

  114. D. H. Perkins, “Neutrino interactions,” in Proceedings of the 16th International Conference on High-Energy Physics ICHEP 72, Batavia, IL, September 6–13,1972, Ed. by J. D. Jackson and A. Roberts (National Accelerator Laboratory Publ. Office, Batavia, 1973), Vol. 4, pp. 189–247.

  115. W. A. Mann et al., “Study of the reaction \(\nu + n \to {{\mu }^{ - }} + p\),” in Proceedings of the 16th International Conference on High-Energy Physics ICHEP 72, Batavia, IL, September 6–13,1972, Ed. by J. D. Jackson and A. Roberts (National Accelerator Laboratory Publ. Office, Batavia, 1973), paper No. 784).

  116. S. J. Barish et al., “An inclusive look at νp and νn charged-current reactions below 6 GeV,” Tech. Rep. COO-1428-428, ANL-HEP-CP-75-38 (Argonne Natl. Labor., 1976).

  117. R. A. Singer, “Study of the reaction \(\nu + n \to {{\mu }^{ - }} + p\),” in Proceedings of the International Conference on Neutrino Physics and Astrophysics Neutrino’1977, Baksan Valley, USSR, June 18–24,1977, Ed. by M. A. Markov, G. V. Domogatsky, A. A. Komar, and A. N. Tavkhelidze (Nauka, Moscow, 1978), Vol. 2, pp 95–104.

  118. L. A. Ahrens et al., “A new limit on the strength of mixing between νμ and νe,” Phys. Rev. D 31, 2732–2736 (1985).

    ADS  Google Scholar 

  119. K. Furuno et al., “BNL 7-foot bubble chamber experiment: Neutrino deuterium interactions,” KEK Preprint 2003-48, RCNS-03-01 (2003);

  120. Reported at the 2nd International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region 'NuInt 2002', Irvine, CA, December 12–15, 2002.

  121. N. Suwonjandee, “The measurement of the quasi-elastic neutrino-nucleon scattering cross section at the Tevatron,” Ph.D. Thesis (Cincinnati Univ., OH, 2004).

  122. L. B. Auerbach et al., “Measurements of charged current reactions of \({{\nu }_{\mu }}\) on 12C,” Phys. Rev. C 66, 015501 (2002).

    ADS  Google Scholar 

  123. M. M. Block et al., “Neutrino interactions in the CERN heavy liquid bubble chamber,” Phys. Lett. 12, 281–285 (1964).

    ADS  Google Scholar 

  124. T. Eichten et al., “Measurement of the neutrino-nucleon and antineutrino-nucleon total cross-sections,” Phys. Lett. B 46, 274–280 (1973).

    ADS  Google Scholar 

  125. M. Haguenauer, “Gargamelle experiment,” in Proceedings of the 17th International Conference on High Energy Physics, London, UK, July 1–10,1974, Ed. by J. R. Smith (Rutherford High Energy Laboratory, Didcot, Berkshire, UK, 1975), pp. IV-9.

  126. M. Rollier, “Elastic neutrino and anti-neutrino interactions,” in Proceedings of the International Colloquium on High Energy Neutrino Physics, Paris, France, March 18–20,1975 (Editions du Centre Natl. Rech. Sci., Paris, 1975), pp. 349–355.

  127. P. Musset and J. P. Vialle, “Neutrino physics with Gargamelle,” Phys. Rep. 39, 1–130 (1978).

    ADS  Google Scholar 

  128. S. K. Singh and E. Oset, “Quasielastic neutrino (anti-neutrino) reactions in nuclei and the axial vector form-factor of the nucleon,” Nucl. Phys. A 542, 587–615 (1992).

    ADS  Google Scholar 

  129. A. M. de la Ossa Romero, “Study of accelerator neutrino interactions in a liquid argon TPC,” Ph.D. Thesis (Granada Univ. and CAFPE, Granada, 2007).

  130. H. J. Grabosch et al., “Investigation of quasielastic neutrino and anti-neutrino reactions in the energy range below 20 GeV,” Tech. Rep. PHE-86-11 (Inst. High-Energy Phys., Zeuthen, 1986).

  131. J. Wolcott et al., “Measurement of electron neutrino quasielastic and quasielasticlike scattering on hydrocarbon at \(\left\langle {{{E}_{\nu }}} \right\rangle = 3.6\) GeV,” Phys. Rev. Lett. 116, 081802 (2016).

    ADS  Google Scholar 

  132. M. Betancourt et al., “Direct measurement of nuclear dependence of charged current quasielasticlike neutrino interactions using MINERvA,” Phys. Rev. Lett. 119, 082001 (2017).

    ADS  Google Scholar 

  133. C. E. Patrick et al., “Measurement of the muon antineutrino double-differential cross section for quasielastic-like scattering on hydrocarbon at Eν ~ 3.5 GeV,” Phys. Rev. D 97, 052002 (2018).

    ADS  Google Scholar 

  134. X. G. Lu et al., “Measurement of final-state correlations in neutrino muon-proton mesonless production on hydrocarbon at GeV,” Phys. Rev. Lett. 121, 022504 (2018).

    ADS  Google Scholar 

  135. A. A. Aguilar-Arevalo et al., “First measurement of monoenergetic muon neutrino charged current interactions,” Phys. Rev. Lett. 120, 141802 (2018).

    ADS  Google Scholar 

  136. K. Abe et al., “First measurement of the \({{\nu }_{\mu }}\) charged-current cross section on a water target without pions in the final state,” Phys. Rev. D 97, 012001 (2018).

    ADS  Google Scholar 

  137. F. James and M. Roos, “MINUIT—a system for function minimization and analysis of the parameter errors and correlations,” Comput. Phys. Commun. 10, 343–367 (1975).

    ADS  Google Scholar 

  138. F. James, “MINUIT—function minimization and error analysis: Reference manual, Vers. 94.1,” CERN-D-506 (CERN, 1994).

    Google Scholar 

  139. A. Bodek and J. L, “Ritchie, "Fermi motion effects in deep inelastic lepton scattering from nuclear targets,” Phys. Rev. D 23, 1070–1091 (1981).

    ADS  Google Scholar 

  140. D. Ruterbories et al., “Measurement of quasielastic-like neutrino scattering at ❬Eν❭ ~ 3.5 GeV on a hydrocarbon target,” Phys. Rev. D 99, 012004 (2019).

    ADS  Google Scholar 

  141. C. Andreopoulos et al., GENIE Physics and User Manual, Version 3.0.0.xx. https://genie-docdb.pp.rl.ac.uk/DocDB/0000/000002/003/man.pdf.

  142. L. M. Kerby, S. G. Mashnik, and A. J. Sierk, “Comparison of expanded preequilibrium CEM model with CEM03.03 and experimental data,” arXiv:1401.4404 [nucl-th] (2014).

  143. S. G. Mashnik and L. M, “Kerby, "MCNP6 fragmentation of light nuclei at intermediate energies,” Nucl. Instrum. Methods Phys. Res., Sect. A 764, 59–81 (2014).

    Google Scholar 

  144. S. G. Mashnik, L. M. Kerby, K. K. Gudima, A. J. Sierk, J. S. Bull, and M. R. James, “Production of energetic light fragments in extensions of the CEM and LAQGSM event generators of the Monte Carlo transport code MCNP6,” Phys. Rev. C 95, 034613 (2017).

    ADS  Google Scholar 

  145. R. A. Arndt, I. I. Strakovsky, and R. L. Workman, “The SAID PWA program,” Int. J. Mod. Phys. A 18, 449-455 (2003).

    ADS  Google Scholar 

  146. R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L. Workman, “Extended partial-wave analysis of πN scattering data,” Phys. Rev. C 74, 045205 (2006).

    ADS  Google Scholar 

  147. The SAID Partial-Wave Analysis Facility and Full Database, George Washington University. http://gwdac.phys.gwu.edu.

  148. L. L. Salcedo, E. Oset, M. J. Vicente-Vacas, and C. Garcia-Recio, “Computer simulation of inclusive pion nuclear reactions,” Nucl. Phys. A 484, 557–592 (1988).

    ADS  Google Scholar 

  149. K. S. Kuzmin, V. V. Lyubushkin, and V. A. Naumov, “Lepton polarization in neutrino nucleon interactions,” Mod. Phys. Lett. A 19, 2815–2829 (2004).

    ADS  MATH  Google Scholar 

  150. K. S. Kuzmin, V. V. Lyubushkin, and V. A. Naumov, “Extended Rein-Sehgal model for tau lepton production,” Nucl. Phys. B (Proc. Suppl.) 139, 158–161 (2005).

    ADS  Google Scholar 

  151. Ch. Berger and L. M. Sehgal, “Lepton mass effects in single pion production by neutrinos,” Phys. Rev. D 76, 113004 (2007).

    ADS  Google Scholar 

  152. H. S. Budd, A. Bodek, and J. Arrington, “Vector and axial form-factors applied to neutrino quasielastic scattering,” Nucl. Phys. B (Proc. Suppl.) 139, 90–95 (2005).

    ADS  Google Scholar 

  153. T. Golan, J. T. Sobczyk, and J. Zmuda, “NuWro: The Wroclaw Monte Carlo generator of neutrino interactions,” Nucl. Phys. B (Proc. Suppl.) 229–232, 499–499 (2012).

    ADS  Google Scholar 

  154. J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, “Inclusive charged-Current neutrino-nucleus reactions,” Phys. Rev. C 83, 045501 (2011).

    ADS  Google Scholar 

  155. K. Gallmeister, U. Mosel, and J. Weil, “Neutrino-induced reactions on nuclei,” Phys. Rev. C 94, 035502 (2016).

    ADS  Google Scholar 

  156. S. Dolan, U. Mosel, K. Gallmeister, L. Pickering, and S. Bolognesi, “Sensitivity of neutrino-nucleus interaction measurements to 2p2h excitations,” Phys. Rev. C 98, 045502 (2018).

    ADS  Google Scholar 

  157. J. M. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, “The nucleon axial mass and the MiniBooNE quasielastic neutrino-nucleus scattering problem,” Phys. Lett. B 707, 72–75 (2012).

    ADS  Google Scholar 

  158. Y. Hayato, “NEUT,” Nucl. Phys. B (Proc. Suppl.) 112, 171–176 (2002).

    ADS  Google Scholar 

  159. Y. Hayato. A neutrino interaction simulation program library NEUT," Acta Phys. Polon. B 40, 2477–2489 (2009).

  160. R. W. Peelle, “Peelle’s Perinent Puzzle,” Informal Memorandum (Oak Ridge Natl. Labor., Oak Ridge, Tennessee, USA, 1987).

Download references

ACKNOWLEDGMENTS

We thank to Ulrich Mosel, Stephen Dolan, Jose Amaro, and Ignacio Ruiz Simo for providing us with the scripts and tabulated data for their models. We are very grateful to Samoil Bilenky, Arie Bodek, Dmitry Naumov, Kendall Mahn, Alexander Olshevskiy, Olga Petrova, Oleg Samoylov, Oleg Teryaev, and our colleagues from the GENIE Collaboration for helpful discussions and critical comments.

Funding

Research of I.K. has been supported by the Russian Science Foundation grant no. 18-12-00271.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. D. Kakorin, K. S. Kuzmin or V. A. Naumov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakorin, I.D., Kuzmin, K.S. & Naumov, V.A. A Unified Empirical Model for Quasielastic Interactions of Neutrino and Antineutrino with Nuclei. Phys. Part. Nuclei Lett. 17, 265–288 (2020). https://doi.org/10.1134/S1547477120030061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477120030061

Navigation