Skip to main content
Log in

Investigations on Different Decay Modes of Darmstadtium

  • PHYSICS AND TECHNIQUE OF ACCELERATORS
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We have studied the competition between different decay modes such as binary, ternary, cluster radioactivity and alpha decay. The competition between different decay modes plays a very important role in identifying the existence of the compound nuclei. The competition between different decay modes are studied using half-lives, penetration probability and amount of energy released during the fission/decay process. From this study it is observed that the superheavy nuclei 268–281Ds survive fission and undergo alpha decay and the nuclei 261–265Ds undergo spontaneous fission. We have also predicted the decay chains of the 268–281Ds. The present work is compared with the experiments available in the literature. The predicted isotopes with their half-lives will provide further investigations on the synthesis of more isotopes of Ds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. N. Glasoe and J. Steigman, Phys. Rev. 58, 1 (1940).

    ADS  Google Scholar 

  2. P. Flerov, Phys. Rev. 58, 89 (1940).

    ADS  Google Scholar 

  3. Tsien San Tsiang, Ho Zah-Wel, L. Vigneron, and R. Chastel, Nature (London, U.K.) 159, 773–774 (1947)

  4. San-Tsiang Tsien, J. Phys. Radium 8, 165–178 (1947).

    Google Scholar 

  5. M. Greiner, W. Scheid, and V. Oberacker, Sov. J. Part. Nucl. 11 (1980).

  6. H. J. Rose and G. A. Jones, Nature (London, U.K.) 307, 245 (1984).

    ADS  Google Scholar 

  7. J. K. Pansaers, C.R. Paris 122, 420 (1896);

  8. J. K. Pansaers, C.R. Paris 122, 521 (1896).

  9. E. Rutherford, “Disintegration of the radioactive elements,” Harper’s Mon. Mag., 279–284 (1904).

  10. Xiaojun Bao, Hongfei Zhang, G. Royer, and Junqing Li, Nucl. Phys. A 906, 1–13 (2013).

    ADS  Google Scholar 

  11. Tiekuang Dong and Zhongzhou Ren, Phys. Rev. C 77, 064310 (2008).

    ADS  Google Scholar 

  12. F. Gonnenwein, Nucl. Phys. A 654, 855e–863c (1999)

    ADS  Google Scholar 

  13. E. M. Kozulin, G. N. Knyazheva, I. M. Itkis, M. G. Itkis, et al., Phys. Rev. C 90, 054608 (2014).

    ADS  Google Scholar 

  14. M. Mirea, R. Budaca, and A. Sandulescu, Ann. Phys. 380, 154–167 (2017).

    ADS  Google Scholar 

  15. K. Morita, K. Morimoto, D. Kaji, H. Haba, et al., Eur. Phys. J. A 21, 257–263 (2004).

    ADS  Google Scholar 

  16. Tiekuang Dong and Zhongzhou Ren, Eur. Phys. J. A 26, 69–72 (2005).

    ADS  Google Scholar 

  17. Zhiyuan Zhang, Gan Zai-Guo, Ma Long, et al., Chin. Phys. Lett 29, 012502 (2012).

    ADS  Google Scholar 

  18. S. V. Tolokonnikov, Yu. S. Lutostansky, and E. E. Saperstein, Phys. At. Nucl. 76, 708–715 (2013).

    Google Scholar 

  19. S. C. Wiok, P. H. Heenen, and W. Nazarewicz, Nature (London, U.K.) 433, 705–709 (2005)

    ADS  Google Scholar 

  20. Y. Z. Wang, S. J. Wang, Y. Hou, and J. Z. Gu, Phys. Rev. C 92, 064301 (2015).

    ADS  Google Scholar 

  21. J. P. Cui, Y. L. Zhang, S. Zhang, and Y. Z. Wang, Phys. Rev. C 97, 014316 (2018).

    ADS  Google Scholar 

  22. S. Zhang, Y. Zhang, J. Cui, and Y. Wang, Phys. Rev. C 95, 014311 (2017).

    ADS  Google Scholar 

  23. D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. Lett. 107, 062503 (2011).

    ADS  Google Scholar 

  24. D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. C 85, 034615 (2012).

    ADS  Google Scholar 

  25. Y. L. Zhang and Y. Z. Wang, Phys. Rev. C 97, 014318 (2018).

    ADS  Google Scholar 

  26. X. J. Bao, H. F. Zhang, J. M. Dong, et al., Phys. Rev. C 89, 067301 (2014).

    ADS  Google Scholar 

  27. H. C. Manjunatha, Int. J. Mod. Phys. E 25, 1650074–85 (2016).

    ADS  Google Scholar 

  28. H. C. Manjunatha, Int. J. Mod. Phys. E 25, 1650074–11 (2016).

    ADS  Google Scholar 

  29. H. C. Manjunatha, Nucl. Phys. A 945, 42–57 (2016).

    ADS  Google Scholar 

  30. H. C Manjunatha, N. Sowmya, K. N. Sridhar, and L. Seenappa, J. Radioanal. Nucl. Chem. 314, 991–999 (2017).

    Google Scholar 

  31. H. C Manjunatha and N. Sowmya, Nucl. Phys. A 969, 68–82 (2018).

    ADS  Google Scholar 

  32. H. C Manjunatha and N. Sowmya, Int. J. Mod. Phys. E 27, 1850041-1–17 (2018).

  33. H. C Manjunatha, K. N. Sridhar, and N. Sowmya, Phys. Rev. C 98, 024308 (2018).

    ADS  Google Scholar 

  34. N. Sowmya and H. C. Manjunatha, Bulg. J. Phys. 46, 16–27 (2019).

    Google Scholar 

  35. H. C. Manjunatha and K. N. Sridhar, Eur. Phys. J. A 53, 156 (2017).

    ADS  Google Scholar 

  36. H. C. Manjunatha, Nucl. Phys. A 945, 42–57 (2016).

    ADS  Google Scholar 

  37. H. C. Manjunatha, K. N. Sridhar, and N. Sowmya, Nucl. Phys. A 987, 382–395 (2019).

    ADS  Google Scholar 

  38. H. C. Manjunatha and K. N. Sridhar, Nucl. Phys. A 962, 7–23 (2017).

    ADS  Google Scholar 

  39. H. C. Manjunatha and K. N. Sridhar, Eur. Phys. J. A 53, 97 (2017).

    ADS  Google Scholar 

  40. H. C. Manjunatha and K. N. Sridhar, Eur. Phys. J. A 53, 196 (2017).

    ADS  Google Scholar 

  41. H. C. Manjunatha and K. N. Sridhar, Nucl. Phys. A 975, 136–153 (2018).

    ADS  Google Scholar 

  42. I. Dutt, Pramana 76, 921 (2011).

    ADS  Google Scholar 

  43. D. N. Poenaru, W. Greiner, M. Ivaşcu, D. Mazilu, and I. H. Plonski, Z. Phys. A: At. Nucl. 325, 435 (1986).

    ADS  Google Scholar 

  44. W. D. Myers and W. J. Świątecki, Nucl. Phys. 81, 1 (1966).

    Google Scholar 

  45. P. Möller, J. R. Nix, W. D. Myers, and W. J. Świątecki, At. Data Nucl. Data Tables 59, 185 (1995).

    ADS  Google Scholar 

  46. W. D. Myers and W. J. Świątecki, Phys. Rev. C 62, 044610b (2000).

    ADS  Google Scholar 

  47. J. Blocki and W. J. Świątecki, Ann. Phys. (N.Y.) 132, 53 (1981).

    ADS  Google Scholar 

  48. J. Blocki and W. J. Świątecki, Ann. Phys. (N.Y.) 132, 53 (1983).

    ADS  Google Scholar 

  49. G. Audi and A. H. Wapstra, Nucl. Phys. A 595, 409 (1995).

    ADS  Google Scholar 

  50. https://www-nds.iaea.org/RIPL-3.

  51. P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109, 1 (2016).

    ADS  Google Scholar 

  52. H. C. Manjunatha, B. M. Chandrika, and L. Seenappa, Mod. Phys. Lett. A 31, 1650162 (2016).

    ADS  Google Scholar 

  53. M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, et al., Chin. Phys. C 36, 1603 (2012).

    Google Scholar 

  54. H. C. Manjunatha and N. Sowmya, Mod. Phys. Lett. A 34, 1950112 (2019).

    ADS  Google Scholar 

  55. D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. C 83, 014601 (2011).

    ADS  Google Scholar 

  56. D. Ni, Z. Ren, T. Dong, and C. Xu, Phys. Rev. C 78, 044310 (2008).

    ADS  Google Scholar 

  57. V. Yu. Denisov and A. A. Khudenko, Phys. Rev. C 79, 054614 (2009).

    ADS  Google Scholar 

  58. C. Xu, Z. Ren, and Y. Guo, Phys. Rev. C 78, 044329 (2008).

    ADS  Google Scholar 

  59. Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, et al., Phys. Rev. C 70, 064609 (2004).

    ADS  Google Scholar 

  60. Yu. Ts. Oganessian, A. V. Yeremin, et al., Nature (London, U.K.) 400, 242 (1999).

    ADS  Google Scholar 

  61. S. Hofmann, V. Ninov, F. P. Hessberger, P. Armbruster, et al., Z. Phys. A 354, 229 (1996).

    ADS  Google Scholar 

  62. S. Hofmann, Rep. Prog. Phys. 61, 639 (1998).

    ADS  Google Scholar 

  63. S. Hofmann, F. P. Hessberger, D. Ackermann, S. Antalic, et al., Eur. Phys. J. A 10, 5 (2001).

    ADS  Google Scholar 

  64. A. Türler, R. Dressler, B. Eichler, H. W. Gäggeler, et al., Phys. Rev. C 57, 1648 (1998).

    ADS  Google Scholar 

  65. Yu. Ts. Oganessian, V. K. Utyonkov, et al., Phys. Rev. C 74, 044602 (2006).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Manjunatha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sowmya, N., Manjunatha, H.C. Investigations on Different Decay Modes of Darmstadtium. Phys. Part. Nuclei Lett. 17, 370–378 (2020). https://doi.org/10.1134/S1547477120030140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477120030140

Navigation