Skip to main content
Log in

11-Year Index of Linear Configurations of Venus, Earth, and Jupiter and Solar Activity

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

This study uses the evolution of a parameter introduced by the author that characterizes the relative position of planets: the daily average difference of the heliocentric longitudes for a pair of planets. Venus, Earth, and Jupiter are considered in pairs based on the minimum values of this parameter. We compiled an index (JEV) to describe the 11-year cycle of solar activity based on the minimum deviations of the planets from the line passing through them and the Sun when the planets are located on one side of the Sun (planets are in conjunction), as well as when the planets are located on opposite sides of the Sun and on the same line with it. In addition, the average differences were calculated for four planets with Mercury. It is shown that Mercury does not fit into the 11-year linear configurations of Venus, Earth, and Jupiter and does not participate in the maximum gravitational impact on the Sun. Only Venus, Earth, and Jupiter in their linear configurations have an 11-year cycle. The JEV index is compared with solar activity and it is shown that the average 11-year periodicity in the JEV index and in solar activity over a 1000-year time interval coincide to two decimal places. This indicates a possible relationship between the JEV index and the 11-year solar activity cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., and Steinhilber, F., Is there a planetary influence on solar activity?, Astron. Astrophys., 2012, vol. 548, pp. 1–10. https://doi.org/10.1051/0004-6361/201219997

    Article  Google Scholar 

  2. Brown, E.W., A possible explanation of the sunspot period, Mon. Not. R. Astron. Soc., 1900, vol. 60, pp. 599–606.

    Article  Google Scholar 

  3. Cameron, R.H. and Schüssler, M., No evidence for planetary influence on solar activity, Astron. Astrophys., 2013, vol. 557, id A83.

  4. Charbonneau, P., Solar physics: the planetary hypothesis revived, Nature, 2013, vol. 493, pp. 613–614.

    Article  Google Scholar 

  5. Charvatova, I. and Strestik, J., Long term variations in duration of solar cycle, Bull. Astron. Czech, 1991, vol. 42, no. 2, pp. 90–97.

    Google Scholar 

  6. Clayton, H.H., Solar cycles, Smith. Misc. Coll., 1947, vol. 106, no. 3870.

  7. Condon, J.J. and Schmidt, R.R., Planetary tides and the sunspot cycles, Sol. Phys., 1975, vol. 42, pp. 529–532.

    Article  Google Scholar 

  8. Dolgachev, V.P., Domozhilova, L.M., and Khlystov, A.I., Some properties of barycentric motion of big planets around the Sun, Tr. Gos. Astron. Inst. Im. Shternberga, 1991, vol. 62, pp. 111–118.

    Google Scholar 

  9. Fairbridge, R.V. and Shirley, J.N., Prolonged minima and the 179-yr cycle of the solar inertial motion, Sol. Phys., 1987, vol. 110, pp. 191–220.

    Article  Google Scholar 

  10. ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_ NUMBERS/INTERNATIONAL

  11. Jose, P.D., Sun’s motion and sunspots, Astron. J., 1965, vol. 70, pp. 193–200.

    Article  Google Scholar 

  12. Khlystov, A.I., Sun’s motion around the Solar System barycenter and solar activity, Vestn. Kiev. Univ., 1982, no. 24, pp. 61–65.

  13. Khlystov, A.I., Dolgachev, V.P., and Domozhilova, L.M., Barycentric motion of the Sun and solar–terrestrial relations, Biofizika, 1992, vol. 37, no. 3, pp. 547–552.

    Google Scholar 

  14. Khlystov, A.I., Dolgachev, V.P., and Domozhilova, L.M., Influence of the barycentric motion of the Sun on solar activity, Tr. Gos. Astron. Inst. Im. Shternberga, 1995, vol. 64, no. 1, pp. 91–102.

    Google Scholar 

  15. Malburet, J., Sur la cause de la périodicité des taches solaires, Astronomie, 1925, vol. 39, pp. 503–515.

    Google Scholar 

  16. Morner, N.A., Planetary beat and solar–terrestrial responses, Pattern Recognit. Phys., 2013, pp. 107–116.

    Book  Google Scholar 

  17. Nikulin, I.F., Whether the planets influence on solar activity, in Tsikly aktivnosti na Solntse i zvezdakh. Sb. st. rabochego soveshchaniya–diskussii, Moskva, 18–19 dekabrya 2009 (Solar and Stellar Activity Cycles: Proceedings of the Working Meeting–Discussion, Moscow, December 18–19, 2009), St. Petersburg: Izd. Astron. obshchestva, 2009, pp. 271–274.

  18. Okhlopkov, V.P., The main periodicities of the motion of the center of the sun relative to the center of mass of the solar system and solar activity, Moscow Univ. Phys. Bull., 2011, vol. 66, no. 6, pp. 634–638.

    Article  Google Scholar 

  19. Okhlopkov, V.P., Cycles of solar activity and the configurations of planets, Moscow Univ. Phys. Bull., vol. 67, no. 4, pp. 377–383.

  20. Okhlopkov, V.P., Relationship of solar activity cycles to planetary configurations, Bull. Russ. Acad. Sci.: Phys., 2013, vol. 77, no. 5, pp. 599–601.

    Article  Google Scholar 

  21. Poluianov, S. and Usoskin, I., Critical analysis of a hypothesis of the planetary tidal influence on solar activity, Sol. Phys., 2014, vol. 289, pp. 2333–2342.

    Article  Google Scholar 

  22. Prokudina, V.S., Study of the possibly link between 22-year and 80-year solar activity cycles and the Solar System barycentric motion, Tr. Gos. Astron. Inst. Im. Shternberga, 1995, vol. 64, no. 1, pp. 145–157.

    Google Scholar 

  23. Shostakovich, V.B., Sunspots and planetary positions, Tr. Irkutsk. Magnet. Obs., 1928, nos. 2–3.

  24. Shove, D.J., The sunspot cycle, J. Geophys. Res., 1955, vol. 60, no. 2, pp. 127–146.

    Article  Google Scholar 

  25. Shove, D.J., Sunspots Cycles, Stroudsberg: Hutchinson Ross, 1983.

  26. Solheim, J.E., The sunspot cycle length: Modulated by planets?, Pattern Recognit. Phys., 2013, vol. 1, pp. 159–164.

    Article  Google Scholar 

  27. Stefani, F., Giesecke, A., Weber, N., and Weier, T., Synchronized helicity oscillations: A link between planetary tides and the solar cycle?, Sol. Phys., 2016, vol. 291, no. 8, pp. 2197–2212.

    Article  Google Scholar 

  28. Surdin, V.G., Dinamika zvezdnykh sistem (Stellar System Dynamics), Moscow: Izd. Mosk. tsentra nepreryvnogo matematicheskogo obrazovaniya, 2001.

  29. Trellis, M., Influence de la configuration du système solaire sur la naissance des centres d’activité, C. R. Acad. Sci. Paris, 1966, vol. 262, no. 5, pp. 376–377.

    Google Scholar 

  30. Wilson, I.R.G., The Venus–Earth–Jupiter spin-orbit coupling model, Pattern Recognit. Phys., 2013, vol. 1, pp. 147–158.

    Article  Google Scholar 

  31. Wolf, R., Mittheilungen über die Sonnenflecken, Astron. Mitt. Zurich, 1859, vol. 8, pp. 183–191.

    Google Scholar 

  32. Wolff, C.L. and Patrone, P.N., A new way that planets can affect the Sun, Sol. Phys., 2010, vol. 266, pp. 227–246. https://doi.org/10.1007/s11207-010-9628-y

    Article  Google Scholar 

  33. Wood, K.D., Sunspots and planets, Nature, 1972, vol. 240, pp. 91–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Okhlopkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okhlopkov, V.P. 11-Year Index of Linear Configurations of Venus, Earth, and Jupiter and Solar Activity. Geomagn. Aeron. 60, 381–390 (2020). https://doi.org/10.1134/S0016793220030147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220030147

Navigation