Skip to main content
Log in

Influence of temperature in a mass transfer simulation: application to wood

  • Original Article
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

For in situ timber structure applications, heat and mass transfer are strongly dependent on temperature. This work focuses on a parametrical modeling to evaluate and quantify temperature effect at each stage. The model is classically based on a coupling between Fourier's law, which establishes the temporal and spatial distribution of temperature, and Fick's law dealing specifically with the water field distribution. Several hypotheses are proposed and discussed in this work regarding thermal coupling. In particular, it is shown how to integrate temperature into a permeability correction. An interaction between temperature and the sorption isotherm is also proposed herein. The model incorporates partial adsorption and desorption isotherms. Implementation in a finite element software allows highlighting the various couplings, in comparison with more standard calculus approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A, B, β :

Fitting parameters of water capacity, dimensionless

A a :

Fitting parameter of ∆Hs in adsorption, in J kg1

A d :

Fitting parameter of ∆Hs in desorption, in J kg1

C W :

Heat capacity of water, in J kg1 K1

C h :

Homogenized heat capacity, in J kg1 K1

C anh :

Dry heat capacity, in J kg1 K1

C pv :

Heat capacity of vapor, in J kg1 K1

D T :

Heat transfer tensor, in m2 s1

D W :

Moisture transfer tensor, in m2 s1

D WT :

Hygrothermal coupling tensor (Soret’s effect), in m2 s1

D TW :

Thermo-hydric coupling tensor, in m2 s1

E a :

Activation energy, in J kg1

h T :

Convective heat transfer coefficient, in W m2 K1

h W :

Convective moisture transfer coefficient, in s m1

H s :

Sorption latent heat, in kJ kg1

Hs :

Latent heat of sorption of bound water, in kJ kg1

L :

Latent heat of free water vaporization, in kJ kg1

m W :

Wet mass, in kg

m anh :

Dry mass, in kg

RH:

Relative humidity, dimensionless

∆RH:

Incremental variation of relative humidity, dimensionless

RHamb :

Ambient air relative humidity, dimensionless

RHsurf :

Equivalent surface relative humidity, dimensionless

p v :

Vapor pressure, in Pa

p vs :

Saturated vapor pressure, in Pa

R :

Ideal gas law constant, in J mol−1 K−1

T :

Temperature field, in K

T amb :

Ambient air temperature, in K

T surf :

Surface temperature, in K

W :

Moisture content field, dimensionless

wi, wi+1 :

Incremental moisture content field, dimensionless

w s :

Moisture content at the fiber saturation point, dimensionless

w a :

Moisture content field at the end of adsorption, dimensionless

w d :

Moisture content field at the end of desorption, dimensionless

δ:

Vapor permeability, in kg s1 m1 Pa1

δ* :

Apparent vapor permeability, in kg s1 m1 Pa1

δo :

Vapor permeability fitting parameter, in kg s1 m1 Pa1

λ (w):

Thermal conductivity of the wet material, in W m1 K1

ξ:

Water capacity, dimensionless

ξab :

Water envelope capacity in adsorption, dimensionless

ξdb :

Water envelope capacity in desorption, dimensionless

ξa :

Partial water capacity in adsorption, dimensionless

ξd :

Partial water capacity in desorption, dimensionless

ρ h :

Wet density, in kg m3

ρ anh :

Dry density, in kg m3

ϕa, αa :

Thermodynamic parameters for adsorption, dimensionless

ϕd, αd :

Thermodynamic parameters for desorption, dimensionless

References

  • AFNOR (2010). NF EN 1995-1-1/NA. Eurocode 5 : Design of timber structures—Part 1–1: General—Common rules and rules for buildings—National annex to NF EN 1995-1-1:2008—General—Common rules and rules for buildings

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Chen M, Coasne B, Guyer R, Derome D, Carmeliet J (2018) Role of hydrogen bonding in hysteresis observed in sorption-induced swelling of soft nanoporous polymers. Nat Commun 9:3507. https://doi.org/10.1038/s41467-018-05897-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choong ET (1963) Movement of moisture through a softwood in the hygroscopic range. For Prod J 13(11):489–498

    Google Scholar 

  • Dent RW (1980) A sorption theory for gas mixtures. Polym Eng Sci 20:286–289

    Article  CAS  Google Scholar 

  • Frandsen HL (2007) Selected constitutive models for simulating the hygromechanical response of wood. DCE thesis, Department of Civil Engineering, Aalborg University, Denmark.

  • Hartley ID (1993) Analysis of the wood sorption isotherm using clustering theory. Holzforschung 47:163–167

    Article  CAS  Google Scholar 

  • Kulasinski K (2015) Physical and mechanical aspects of moisture adsorption in wood biopolymers investigated with atomisitic simulations. PhD Thesis, ETH Zurich, Switzerland.

  • Künzel H (1995) Simultaneous heat and moisture transport in building components: One-and two dimensional calculation using simple parameters (Fraunhofer IRB Verlag). PhD Thesis, Fraunhofer Institute of Building Physics, Germany.

  • Li X, Zhang B, Li W, Li Y (2006) Nonisothermal moisture movement in wood. Front For China 1:348–352

    Article  CAS  Google Scholar 

  • Luikov AV, Mikhailov YA (1965) Theory of energy and mass transfer. Pergamon Press, Oxford

    Google Scholar 

  • Merakeb S (2006) Couplage hygromécanique dans le processus de diffusion dans le bois. PhD thesis, University of Limoges

  • Merakeb S, Dubois F, Petit C (2009) Modeling of the sorption hysteresis for wood. Wood Sci Technol 43:575–589

    Article  CAS  Google Scholar 

  • Nelson RM (1986) Diffusion of bound water in wood-part 3-A model for nonisothermal diffusion. Wood Sci Technol 20:309–328

    Article  CAS  Google Scholar 

  • Nelson RM (1991) Heats of transfer and activation energy for bound water diffusion in wood. Wood Sci Technol 25:193–202

    Article  CAS  Google Scholar 

  • Pedersen CR (1990) Combined heat and moisture transfer in building constructions. Thermal Insulation Laboratory Technical University of Denmark, Lyngby

    Google Scholar 

  • Perré P, May BK (2001) A numerical drying model that accounts for the coupling between transfers and solid mechanics. Case of highly deformable products. Dry Technol 19:1629–1643

    Article  Google Scholar 

  • Philip JR, Vries DA (1957) Moisture movement in porous materials under temperature gradients. Trans Am Geophys Union 38:222–232

    Article  Google Scholar 

  • Rawat SPS (1996) Enthalpy-entropy compensation during sorption of water in wood. J Appl Polym Sci 60:787–790

    Article  CAS  Google Scholar 

  • Rosen HN (1976) Exponential dependency of moisture diffusion coefficient. Wood Sci 8:174–179

    Google Scholar 

  • Siau JF (1971) Flow in wood. Syracuse University Press, New York

    Google Scholar 

  • Siau JF, Jin Z (1985) Nonisothermal moisture diffusion experiments analyzed by four alternative equations. Wood Sci Technol 19:151–157

    Article  CAS  Google Scholar 

  • Skaar C (1988) Wood water relations. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Stamm AJ (1959) Bound water diffusion into wood in the fiber direction. For Prod J 9(1):27–32

    CAS  Google Scholar 

  • Stamm AJ (1964) Wood and cellulose science. Ronald Press Co., New York

    Google Scholar 

  • Varnier M, Sauvat N, Montero C, Dubois F, Gril J (2018) Adaptation of Eurocode 5 standard to French hardwoods—proposal of new hygroscopic equilibrium charts. In: 5th INTER meeting Tallinn, Estonia

  • Zhang C, Coasne B, Guyer R, Derome D, Carmeliet J (2020) Moisture-induced crossover in the thermodynamic and mechanical response of hydrophilic biopolymer. Cellulose 27:89–99

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by the French National Research Agency (ANR) through EFEUR5 project (ANR‐15‐CE08‐0027) concerning Structural behavior of French Hardwood for better optimization with Eurocode 5. The authors would like to express their appreciation towards the ANR financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Sauvat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varnier, M., Sauvat, N., Ulmet, L. et al. Influence of temperature in a mass transfer simulation: application to wood. Wood Sci Technol 54, 943–962 (2020). https://doi.org/10.1007/s00226-020-01197-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-020-01197-y

Navigation