Skip to main content
Log in

CdSe-Based Quantum Dots as In Situ Pressure and Temperature Non-intrusive Sensors in Elastohydrodynamic Contacts

  • Methods
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We present a new technique designed for in situ measurement of pressure and temperature in lubricating films. An innovative methodology has been developed, based on the photoluminescence properties of non-intrusive CdSe-based nanosize sensors (quantum dots). The sensitivity to pressure and temperature of these sensors dispersed in a carrier fluid was established through calibrations performed in diamond anvil cells. Elastohydrodynamic (EHD) contacts of different combinations of contacting solids (glass-steel, glass-Si3N4, sapphire-steel and sapphire-Si3N4) and submitted to various operating conditions were studied through in situ experiments and numerical simulations. Isothermal experiments were performed first: both experimental central pressures and pressure profiles were obtained, with a very good agreement with the values predicted by the numerical model. A series of non-isothermal experiments were then carried out to perform temperature measurements. Temperature rises in the central zone of EHD contacts involving various material pairs were measured and compared to predictions, leading to a very satisfying agreement. Overall, the deviation between measurements and predictions remained smaller than the uncertainty of the measurement method. Therefore, these findings proved the potential of the methodology to probe in situ pressure and temperature in EHD contacts. Comparative performance with competing techniques was examined in terms of intrusiveness, level of reliability, spatial resolution, accuracy and complexity. As this work is a pioneering development, the technique may be improved in the near future, opening an avenue for even more accurate or faster measurements for example, and eventually offering a better understanding of the mechanisms at work in this type of lubricated interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(a\) :

Contact radius

\(C_{{\text{p}}}\) :

Heat capacity

\(C_{{{\text{pf}}}}\) :

Fluid heat capacity

\(D\) :

Thermal diffusivity

\(E_{{}}\) :

Young’s Modulus

\(E_{{\text{g}}}\) :

Emission energy, used here to denote the energy at maximum emission

\(E_{{{\text{g}}0}}\) :

Constant in Eq. 1

\(E_{{{\text{g}},{\text{inlet}}}}\) :

Emission energy taken at the contact inlet

\(h_{{\text{c}}}\) :

Central film thickness

\(h\left( {x,y} \right)\) :

Film thickness at the coordinates \(\left( {x,y} \right)\)

\(k\) :

Thermal conductivity

\(k_{{\text{f}}}\) :

Fluid thermal conductivity

\(L\) :

Moes material dimensionless parameter

\({\text{LSS}}\) :

Limiting shear stress

\(M\) :

Moes load dimensionless parameter

\(P\) :

Pressure

\(P_{{{\text{Exp}}}}\) :

Experimentally determined pressure

\(P_{{\text{H}}}\) :

Hertzian pressure

\(P_{{{\text{iso}}}}\) :

Pressure found under isothermal conditions

\(P_{{{\text{Num}}}}\) :

Pressure given by the numerical model

\({\text{SRR}}\) :

Slide-to-roll ratio

\(S_{{\text{P}}}\) :

Pressure sensitivity of the emission energy

\(S_{{\text{T}}}\) :

Temperature sensitivity of the emission energy

\(T\) :

Temperature

\(T_{0}\) :

Inlet temperature

\(U_{{\text{e}}}\) :

Entrainment velocity = \(\left( {U_{{\text{b}}} + U_{{\text{d}}} } \right)/2\)

\({\Delta }U\) :

Sliding velocity = \(U_{{\text{b}}} - U_{{\text{d}}}\)

\(U_{{\text{b}}}\) :

Ball velocity

\(U_{{\text{d}}}\) :

Disc velocity

\(w\) :

Normal load

\(\left( {x,y} \right)\) :

Cartesian coordinates in the contact plane

\(\nu\) :

Poisson’s ratio

\(\rho\) :

Density

\(\varphi_{{\text{T}}}\) :

Thermal thickness reduction factor according to Cheng [42]

References

  1. Spikes, H.A.: Thin films in elastohydrodynamic lubrication: the contribution of experiment. Proc. Inst. Mech. Eng. J 213(5), 335–352 (1999)

    Google Scholar 

  2. Albahrani, S., Philippon, D., Vergne, P., Bluet, J.: A review of in situ methodologies for studying elastohydrodynamic lubrication. Proc. Inst. Mech. Eng. J. 230(1), 86–110 (2016)

    CAS  Google Scholar 

  3. Kumar, R., Azam, M.S., Ghosh, S.K., Yadav, S.: 70 years of elastohydrodynamic lubrication (EHL): a review on experimental techniques for film thickness and pressure measurement. MAPAN 33(4), 481–491 (2018)

    Google Scholar 

  4. Turchina, V., Sanborn, D.M., Winer, W.O.: Temperature measurements in sliding elastohydrodynamic point contacts. J. Lubr. Technol. 96(3), 464–469 (1974)

    Google Scholar 

  5. Ausherman, V.K., Nagaraj, H.S., Sanborn, D.M., Winer, W.O.: Infrared temperature mapping in elastohydrodynamic lubrication. J. Lubr. Technol. 98(2), 236–242 (1976)

    Google Scholar 

  6. Lauer, J.L., Peterkin, M.E.: Infrared emission spectra of elastohydrodynamic contacts. J. Lubr. Technol. 98(2), 230–235 (1976)

    CAS  Google Scholar 

  7. CannSpikes, P.M.H.A.: In lubro studies of lubricants in EHD contacts using FTIR absorption spectroscopy. Tribol. Trans. 34(2), 246–258 (1991)

    Google Scholar 

  8. Reddyhoff, T., Spikes, H.A., Olver, A.V.: Improved infrared temperature mapping of elastohydrodynamic contacts. Proc. Inst. Mech. Eng. J 223(8), 1165–1177 (2009)

    Google Scholar 

  9. Gardiner, D.J., Baird, E., Gorvin, A.C., Marshall, W.E., Dare-Edwards, M.P.: Raman spectra of lubricants in elastohydrodynamic entrapments. Wear 91, 111–114 (1983)

    CAS  Google Scholar 

  10. Gardiner, D.J., Baird, E.M., Craggs, C., Dare-Edwards, M.P., Bell, J.C.: Raman microspectroscopy of a working elastohydrodynamic contact. Lubr. Sci. 1(4), 301–313 (1989)

    CAS  Google Scholar 

  11. Jubault, I., Mansot, J.L., Vergne, P., Mazuyer, D.: In-situ pressure measurements using raman microspectroscopy in a rolling elastohydrodynamic contact. J. Tribol. 124(1), 114–120 (2002)

    Google Scholar 

  12. Jubault, I., Molimard, J., Lubrecht, A.A., Mansot, J.-L., Vergne, P.: In situ pressure and film thickness measurements in rolling/sliding lubricated point contacts. Tribol. Lett. 15(4), 421–429 (2003)

    CAS  Google Scholar 

  13. Kannel, J.W., Bell, J.C., Allen, C.M.: Methods for determining pressure distributions in lubricated rolling contact. ASLE Trans. 8(3), 250–270 (1965)

    Google Scholar 

  14. Orcutt, F.K.: Experimental study of elastohydrodynamic lubrication. ASLE Trans. 8(4), 381–396 (1965)

    Google Scholar 

  15. Safa, M.M.A., Anderson, J.C., Leather, J.A.: Transducers for pressure, temperature and oil film thickness measurement in bearings. Sens. Actuators 3, 119–128 (1982)

    Google Scholar 

  16. Dow, T.A., Stockwell, R.D., Kannel, J.W.: Thermal effects in rolling/sliding EHD contacts: part 1—experimental measurements of surface pressure and temperature. J. Tribol. 109(3), 503–510 (1987)

    Google Scholar 

  17. Kagerer, E., Königer, M.E.: Ion beam sputter deposition of thin film sensors for applications in highly loaded contacts. Solid Films 182(1–2), 333–344 (1989)

    CAS  Google Scholar 

  18. Miyata, S., Höhn, B.-R., Michaelis, K., Kreil, O.: Experimental investigation of temperature rise in elliptical EHL contacts. Tribol. Int. 41(11), 1074–1082 (2008)

    Google Scholar 

  19. Ebner, M., Ziegltrum, A., Lohner, T., Michaelis, K., Stahl, K.: Measurement of EHL temperature by thin film sensors—thermal insulation effects. Tribol. Int. 128, 1–9 (2018)

    Google Scholar 

  20. Marginson, H.J., Sayles, R.S., Olver, A.V.: Limitations of thin film microtransducers in highly loaded contacts. Tribol. Int. 28(8), 517–521 (1995)

    Google Scholar 

  21. Wilczek, A.: The influence of construction features of a thin-layer sensor on pressure distributions recorded in an elastohydrodynamic contact. J. Tribol. 134, 11501 (2012)

    Google Scholar 

  22. Wilczek, A.: Influence of the thin-layer sensor connections on the accuracy of temperature measurement in the EHL contact. Tribol. Int. 90, 315–323 (2015)

    Google Scholar 

  23. Albahrani, S.M.B., Seoudi, T., Philippon, D., Lafarge, L., Reiss, P., Hajjaji, H., Guillot, G., Querry, M., Bluet, J.-M., Vergne, P.: Quantum dots to probe temperature and pressure in highly confined liquids. RSC Adv. 8(41), 22897–22908 (2018)

    CAS  Google Scholar 

  24. Reiss, P., Carayon, S., Bleuse, J., Pron, A.: Low polydispersity core/shell nanocrystals of CdSe/ZnSe and CdSe/ZnSe/ZnS type: preparation and optical studies. Synth. Met. 139(3), 649–652 (2003)

    CAS  Google Scholar 

  25. Protière, M., Nerambourg, N., Renard, O., Reiss, P.: Rational design of the gram-scale synthesis of nearly monodisperse semiconductor nanocrystals. Nanoscale Res. Lett. 6, 472 (2011)

    Google Scholar 

  26. Shan, W., Walukiewicz, W., Ager, J.W., Yu, K.M., Wu, J., Haller, E.E.: Pressure dependence of the fundamental band-gap energy of CdSe. Appl. Phys. Lett. 84(1), 67–69 (2004)

    CAS  Google Scholar 

  27. Fan, H.M., Ni, Z.H., Feng, Y.P., Fan, X.F., Kuo, J.L., Shen, Z.X., Zou, B.S.: High pressure photoluminescence and Raman investigations of CdSe∕ZnS core/shell quantum dots. Appl. Phys. Lett. 90, 021921 (2007)

    Google Scholar 

  28. Li, B., Liu, W., Yan, L., Zhu, X., Yang, Y., Yang, Q.: Revealing mechanisms of PL properties at high and low temperature regimes in CdSe/ZnS core/shell quantum dots. J. Appl. Phys. 124, 044302 (2018)

    Google Scholar 

  29. Valerini, D., Creti, A., Lomascolo, M., Manna, L., Cingolani, R., Anni, M.: Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix. Phys. Rev. B 71, 235409 (2005)

    Google Scholar 

  30. Bair, S.: Reference liquids for quantitative elastohydrodynamics: selection and rheological characterization. Tribol. Lett. 22(2), 197–206 (2006)

    Google Scholar 

  31. Mao, H.K., Xu, J., Bell, P.M.: Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986)

    CAS  Google Scholar 

  32. Grasset, O.: Calibration of the R ruby fluorescence lines in the pressure range [0-1 GPa] and the temperature range [250-300 K]. High Press. Res. 21(3–4), 139–157 (2001)

    Google Scholar 

  33. San-Miguel, A.: Nanomaterials under high-pressure. Chem. Soc. Rev. 35(10), 876–889 (2006)

    CAS  Google Scholar 

  34. Bair, S.S., Andersson, O., Qureshi, F.S., Schirru, M.M.: New EHL modeling data for the reference liquids squalane and squalane plus polyisoprene. Tribol. Trans. 61(2), 247–255 (2018)

    CAS  Google Scholar 

  35. Klotz, S., Chervin, J.-C., Munsch, P., Le Marchand, G.: Hydrostatic limits of 11 pressure transmitting media. J. Phys. D 42(7), 075413 (2009)

    Google Scholar 

  36. Prentice, I.J., Liu, X., Nerushev, O.A., Balakrishnan, S., Pulham, C.R., Camp, P.J.: Experimental and simulation study of the high-pressure behavior of squalane and poly-olefins. J. Chem. Phys. 152, 074504 (2020)

    Google Scholar 

  37. Molimard, J., Querry, M., Vergne, P.: New tools for the experimental study of EHD and limit lubrications. In: Dowson, D. (ed) Proceedings of the 25th Leeds-Lyon Symposium on Tribology “Lubrication at the Frontier”, Lyon 8–11 September 1998, Tribology Series no 36, pp. 717–726, Elsevier, Amsterdam (1999)

  38. Wang, C.F., Fan, F., Sabatini, R.P., Voznyy, O., Bicanic, K., Li, X., Sellan, D.P., Saravanapavanantham, M., Hossain, N., Chen, K., Hoogland, S., Sargent, E.H.: Quantum dot color-converting solids operating efficiently in the kW/cm2 regime. Chem. Mater. 29(12), 5104–5112 (2017)

    CAS  Google Scholar 

  39. Chashchikhin, O.V., Budyka, M.F.: Photoactivation, photobleaching and photoetching of CdS quantum dots—role of oxygen and solvent. J. Photochem. Photobiol. A 343, 72–76 (2017)

    CAS  Google Scholar 

  40. Chittenden, R.J., Dowson, D., Dunn, J.F., Taylor, C.M.: A theoretical analysis of the isothermal elastohydrodynamic lubrication of concentrated contacts. II. General case, with lubricant entrainment along either principal axis of the Hertzian contact ellipse or at some intermediate angle. Proc. R. Soc. Lond. A. Math. Phys. Sci. 397(1813), 271–294 (1985)

    Google Scholar 

  41. Wheeler, J.D., Vergne, P., Fillot, N., Philippon, D.: On the relevance of analytical film thickness EHD equations for isothermal point contacts: qualitative or quantitative predictions? Friction 4(4), 369–379 (2016)

    Google Scholar 

  42. Cheng, H.S.: A refined solution to the thermal-elastohydrodynamic lubrication of rolling and sliding cylinders. ASLE Trans. 8(4), 397–410 (1965)

    Google Scholar 

  43. Jubault, I., Mansot, J.L., Vergne, P., Lubrecht, A.A., Molimard, J.: In situ pressure measurements in an elastohydrodynamically lubricated point contact using Raman microspectrometry. Comparison with numerical calculations. In: Dowson, D. et al. (eds) Proceedings of the 29th Leeds-Lyon Symposium on Tribology, Leeds September 3rd–6th 2002, Tribology Series 41, pp. 663–673. Elsevier (2003)

  44. Habchi, W., Demirci, I., Eyheramendy, D., Morales-Espejel, G.E., Vergne, P.: A finite element approach of thin film lubrication in circular EHD contacts. Tribol. Int. 40(10–12), 1466–1473 (2007)

    CAS  Google Scholar 

  45. Doki-Thonon, T., Fillot, N., Morales Espejel, G.E., Querry, M., Philippon, D., Devaux, N., Vergne, P.: A dual experimental/numerical approach for film thickness analysis in TEHL spinning skewing circular contacts. Tribol. Lett. 50(1), 115–126 (2013)

    Google Scholar 

  46. Wheeler, J.D., Fillot, N., Philippon, D., Vergne, P., Morales-Espejel, G.E.: On the crucial role of ellipticity on elastohydrodynamic film thickness and friction. Proc. Inst. Mech. Eng. J 230(12), 1503–1515 (2016)

    Google Scholar 

  47. Bair, S.: High Pressure Rheology for Quantitative Elastohydrodynamics, 2nd edn. Elsevier, Amsterdam (2019)

    Google Scholar 

  48. Björling, M., Habchi, W., Bair, S., Larsson, R., Marklund, P.: Towards the true prediction of EHL friction. Tribol. Int. 66, 19–26 (2013)

    Google Scholar 

  49. Ndiaye, S.N., Martinie, L., Philippon, D., Devaux, N., Vergne, P.: A quantitative friction-based approach of the limiting shear stress pressure and temperature dependence. Tribol. Lett. 65, 149 (2017)

    Google Scholar 

  50. Niebling, T., Zhang, F., Ali, Z., Parak, W.J., Heimbrodt, W.: Excitation dynamics in polymercoated semiconductor quantum dots with integrated dye molecules: the role of reabsorption. J. Appl. Phys. 106, 104701 (2009)

    Google Scholar 

  51. Narayanaswamy, A., Feiner, L.F., Meijerink, A., van der Zaag, P.J.: The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core−shell quantum dots. ACS Nano 3(9), 2539–2546 (2009)

    CAS  Google Scholar 

  52. Azevedo, G., Monte, A.F.G., Reis, A.F., Messias, D.N.: Fluorescence resonance energy transfer measured by spatial photon migration in CdSe-ZnS quantum dots colloidal systems as a function of concentration. Appl. Phys. Lett. 105, 203108 (2014)

    Google Scholar 

  53. Jolkin A., Larsson R.: Film thickness, pressure distribution and traction in sliding EHL conjunctions. In: Dowson, D et al. (eds) Proceedings of the 25th Leeds-Lyon Symposium on Tribology: “Lubrication at the Frontier. The Role of the Interface and Surface Layers in the Thin Film and Boundary Regime”, Tribology Series vol. 36, pp. 505–516. Elsevier, Amsterdam (1999)

  54. Kaneta, M., Sperka, P., Yang, P., Krupka, I., Yang, P., Hartl, M.: Thermal elastohydrodynamic lubrication of ceramic materials. Tribol. Trans. 61(5), 869–879 (2018)

    CAS  Google Scholar 

  55. Habchi, W., Vergne, P.: On the compressive heating/cooling mechanism in thermal elastohydrodynamic lubricated contacts. Tribol. Int. 88, 143–152 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the SKF company for financial support through the Research Chair ‘‘Lubricated Interfaces for the Future’’ hosted by the INSA de Lyon Foundation. They also want to thank Professor Alfonso San Miguel and Hatem Diaf (Univ Lyon, Université Claude Bernard Lyon1, CNRS, Institut Lumière Matière—UMR5306) for sharing their material and experience on diamond anvil cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Vergne.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seoudi, T., Philippon, D., Fillot, N. et al. CdSe-Based Quantum Dots as In Situ Pressure and Temperature Non-intrusive Sensors in Elastohydrodynamic Contacts. Tribol Lett 68, 73 (2020). https://doi.org/10.1007/s11249-020-01312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01312-x

Keywords

Navigation