Skip to main content
Log in

Micro rheology of Jeffrey nanofluid through cilia beating subject to the surrounding temperature

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The objective of this study is to discuss the micro rheology of mucus (Jeffrey nanofluid) which is a complex biological fluid that protects lungs from pollutants, bacteria, and allergens that can be inhaled during the breathing process. To see the insight of pollutants and effect of surrounding temperature in the mucus, momentum, energy, and concentration equations are modeled with the help of metachronal wave formed by cilia beating. The governing system of equations are modeled in the wave and fixed frame and simplified by the lubrication approach. The velocity profile for recovery and effective stroke is compared and it is analyzed that effective stroke possess high magnitude of velocity when compared with the recovery stroke. The flow of mucus with pollutants and surrounding temperature is calculated with homotopy perturbation method and software “MATHEMATICA.” The results within the given domain are convergent under the different parameters appearing into the system of equations. The physical interpretation of involved parameters is explained through graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

V :

Velocity field vector

U, W :

Velocity components in fixed frame

u, w :

Velocity components in wave frame

R, Z :

Cylindrical coordinates of ciliated tube in fixed frame

r, z :

Cylindrical coordinates of ciliated tube in wave frame

μ :

Dynamic viscosity of fluid

ν :

Kinematic viscosity of fluid

P :

Pressure in fixed frame

p :

Pressure in wave frame

τ :

Cauchy stress tensor

S :

Shear rate

c :

Wave speed

c p :

Specific heat capacity

ε :

Cilia length

ρ f :

Density of fluid

α :

Eccentricity of elliptical pair

β :

Wave number

λ1, λ2 :

Jeffrey viscoelastic parameters

A 1 :

Rivilian-Erickson tensor

T :

Temperature profile

T 0 :

Temperature at the center of the tube

T 1 :

Temperature at the ciliated wall

C :

Concentration profile

C 0 :

Concentration profile at the center of the tube

C 1 :

Concentration at ciliated wall

β 1 :

Coefficient of thermal expansion

\( {\beta}_1^{\ast } \) :

Coefficient of concentration expansion

g :

Gravitational acceleration

D B :

Coefficient of mass diffusivity

D T :

Constant ratio due to thermal diffusion

Re :

Reynolds’ number

Br :

Brinkman number

Nt :

Thermophoresis parameter

Nb :

Brownian motion parameter

Gr C :

Concentration Grashof number

Gr T :

Thermal Grashof number

References

  • Abu-Nada E, Masoud Z, Oztop HF, Campo A (2010) Effect of nanofluid variable properties on natural convection in enclosures. Int J Therm Sci 49(3):479–491

    Article  CAS  Google Scholar 

  • Akbar NS, Khan ZH (2015) Influence of magnetic field for metachoronical beating of cilia for nanofluid with Newtonian heating. J Magn Magn Mater 381:235–242

    Article  CAS  Google Scholar 

  • Akbar NS, Khan ZH, Nadeem S (2016) Influence of magnetic field and slip on Jeffrey fluid in a ciliated symmetric channel with metachronal wave pattern. J Appl Fluid Mech 9(2):565–572

    Article  Google Scholar 

  • Baetjer AM (1967) Effect of ambient temperature and vapor pressure on cilia-mucus clearance rate. J Appl Physiol 23(4):498–504

    Article  CAS  Google Scholar 

  • Bakshani CR, Morales-Garcia AL, Althaus M, Wilcox MD, Pearson JP, Bythell JC, Burgess JG (2018) Evolutionary conservation of the antimicrobial function of mucus: a first defence against infection. npj Biofilms and Microbiomes 4(1):1–2

  • Buongiorno J (2006) Convective transport in nanofluids. J Heat Transf 128(3):240–250

    Article  Google Scholar 

  • Choi SU, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., IL (United States)

  • Choi YK, Bae YH, Kim SW (1995) Block copolymer nanoparticles of ethylene oxide and isobutyl cyanoacrylate. Macromolecules 28(24):8419–8421

    Article  CAS  Google Scholar 

  • Clary-Meinesz CF, Cosson J, Huitorel P, Blaive B (1992) Temperature effect on the ciliary beat frequency of human nasal and tracheal ciliated cells. Biol Cell 76(3):335–338

    Article  CAS  Google Scholar 

  • Dalhamn T (1960) The determination in vivo of the rate of ciliary beat in the trachea. Acta Physiol Scand 49(2–3):242–250

    Article  CAS  Google Scholar 

  • Hatanaka A, Umeda N, Yamashita S, Hirazawa N (2005) A small ciliary surface glycoprotein of the monogenean parasite Neobenedenia girellae acts as an agglutination/immobilization antigen and induces an immune response in the Japanese flounder Paralichthys olivaceus. Parasitology 131(5):591–600

    Article  CAS  Google Scholar 

  • Hayat T, Khan MI, Waqas M, Yasmeen T, Alsaedi A (2016) Viscous dissipation effect in flow of magnetonanofluid with variable properties. J Mol Liq 222:47–54

    Article  CAS  Google Scholar 

  • Jansen KM, Van Dam J (1992) An analytical solution for the temperature profiles during injection molding, including dissipation effects. Rheol Acta 31(6):592–602

    Article  CAS  Google Scholar 

  • Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46(19):3639–3653

    Article  CAS  Google Scholar 

  • Kollberg H, Mossberg B, Afzelius BA, Philipson K, Camner P (1978) Cystic fibrosis compared with the immotile-cilia syndrome. A study of mucociliary clearance, ciliary ultrastructure, clinical picture and ventilatory function. Scand J Respir Dis 59(6):297–306

    CAS  Google Scholar 

  • Lafforgue O, Seyssiecq I, Poncet S, Favier J (2018) Rheological properties of synthetic mucus for airway clearance. J Biomed Mater Res A 106(2):386–396

    Article  CAS  Google Scholar 

  • Mann AB, Shaheen S, Maqbool K, Poncet S (2019) Fractional Burgers fluid flow due to metachronal ciliary motion in an inclined tube. Front Physiol 10:588

    Article  Google Scholar 

  • Maqbool K, Shaheen S, Mann AB (2016) Exact solution of cilia induced flow of a Jeffrey fluid in an inclined tube. SpringerPlus 5(1):1–6

    Article  Google Scholar 

  • Maqbool K, Shaheen S, Siddiqui AM (2019) Effect of nano-particles on MHD flow of tangent hyperbolic fluid in a ciliated tube: an application to fallopian tube. Math Biosci Eng 16(4):2927–2941

    Article  CAS  Google Scholar 

  • Mercke U, Håkansson CH, Toremalm NG (1974) The influence of temperature on mucociliary activity temperature range 20° C-40° C. Acta Otolaryngol 78(1–6):444–450

    Article  CAS  Google Scholar 

  • Norton MM (2009) Modeling problems in mucus viscoelasticity and mucociliary clearance

  • Norton MM, Robinson RJ, Weinstein SJ (2011) Model of ciliary clearance and the role of mucus rheology. Phys Rev E 83(1):011921

    Article  Google Scholar 

  • Sadaf H, Kiani A, Mir NA (2020) Mixed convection analysis of cilia-driven flow of a Jeffrey fluid in a vertical tube. Can J Phys 98(2):111–118

    Article  CAS  Google Scholar 

  • Saleem S, Nadeem S, Rashidi MM, Raju CS (2019) An optimal analysis of radiated nanomaterial flow with viscous dissipation and heat source. Microsyst Technol 25(2):683–689

    Article  Google Scholar 

  • Satir P, Sleigh MA (1990) The physiology of cilia and mucociliary interactions. Annu Rev Physiol 52(1):137–155

    Article  CAS  Google Scholar 

  • Shaheen A, Nadeem S (2017) Metachronal wave analysis for non-Newtonian fluid inside a symmetrical channel with ciliated walls. Results in physics 7:1536–1549

    Article  Google Scholar 

  • Shehzad SA, Abbasi FM, Hayat T, Alsaadi F (2014) MHD mixed convective peristaltic motion of nanofluid with Joule heating and thermophoresis effects. PLoS One 9(11):e111417

    Article  Google Scholar 

  • Shokri H, Kayhani MH, Norouzi M (2019) On the miscible thermo-viscous fingering instability of non-Newtonian fluids in heterogeneous porous media. Rheol Acta 58(11–12):755–769

    Article  CAS  Google Scholar 

  • Siddiqui AM, Farooq AA, Rana MA (2014a) Hydromagnetic flow of Newtonian fluid due to ciliary motion in a channel. Magnetohydrodynamics 50(3):109–122

    Google Scholar 

  • Siddiqui AM, Farooq AA, Rana MA (2014b) Study of MHD effects on the cilia-induced flow of a Newtonian fluid through a cylindrical tube. Magnetohydrodynamics 50(4):249–261

    Google Scholar 

  • Sleigh MA, Blake JR, Liron N (1988) The propulsion of mucus by cilia. Am Rev Respir Dis 137(3):726–741

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadija Maqbool.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The constants calculated by software “MATHEMATICA” are given as

$$ {A}_1=-1-2\pi \varepsilon \alpha \beta \cos \left(2\pi z\right) $$
$$ {A}_2=\frac{Gr_T{h}^4{Nb}^2\left(1+{\lambda}_1\right)+16{Gr}_C{h}^2 Nt\left(1+{\lambda}_1\right)}{256 Nb}+\frac{64\left(\frac{dp}{dz}+4\right)\left(1+{\lambda}_1\right)+16{Gr}_C{h}^2\left(2+{\lambda}_1\right)}{256} $$
$$ \frac{Gr_T\left(-16{h}^2{\lambda}_1+{h}^4\right)\left(1+{\lambda}_1\right)\left( Nt- Br{\left(\frac{dp}{dz}\right)}^2\right)\left(1+{\lambda}_1\right)}{256} $$
$$ {A}_3=\frac{\left(2{Gr}_T Nb-{Gr}_C Nt\right)\left(1+{\lambda}_1\right)}{64 Nb} $$
$$ {A}_4=\frac{Gr_T\left(1+{\lambda}_1\right)\left( Nb+ Nt- Br{\left(\frac{dp}{dz}\right)}^2\left(1+{\lambda}_1\right)\right)}{2304},{A}_5=\frac{1}{4} $$
$$ {A}_6=\frac{1}{16}\left(\frac{Nb}{4}-\frac{Nb+ Nt}{4}\right)+\frac{Nt}{4}+\frac{1}{16} Br\left({Gr}_T+{Gr}_C\right){h}^2\frac{dp}{dz}\left(1+{\lambda}_1\right) $$
$$ -\frac{1}{64}\left(- Nb- Nt+ Br{\left(\frac{dp}{dz}\right)}^2\left(1+{\lambda}_1\right)\right) $$
$$ {A}_7=\frac{1}{36}\left(\frac{1}{32} Br\left({Gr}_T+{Gr}_C\right)\frac{dp}{dz}\left(1+{\lambda}_1\right)+\frac{1}{32}\left( Nb+ Nt\right)\left( Nb+ Nt- Br{\left(\frac{dp}{dz}\right)}^2\left(1+{\lambda}_1\right)\right)\right) $$
$$ {A}_8=\frac{1}{4}+\frac{Nt}{4 Nb}+\frac{\left( Nb+ Nt\right)}{4 Nb} $$
$$ {A}_9=\frac{Nt\left( Nb- Nt+ Br{\left(\frac{dp}{dz}\right)}^2\left(1+{\lambda}_1\right)\right)}{64 Nb},{A}_{10}=\frac{-1}{8}{h}^4\left(1+{\lambda}_1\right) $$
$$ {A}_{11}=\frac{5 Br{Gr}_T{h}^8{\left(\left(1+{\lambda}_1\right)\right)}^2}{3072} $$
$$ {A}_{12}={h}^2\frac{-3072 Nb w(h)+5{Gr}_T{h}^6{Nb}^2\left(1+{\lambda}_1\right)+5{Gr}_T{h}^6 NbNt\left(1+{\lambda}_1\right)}{3072 Nb} $$
$$ {h}^2\frac{64{Gr}_C{h}^4\left(2 Nb+ Nt\right)\left(1+{\lambda}_1\right)}{3072 Nb} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, S., Maqbool, K. & Siddiqui, A.M. Micro rheology of Jeffrey nanofluid through cilia beating subject to the surrounding temperature. Rheol Acta 59, 565–573 (2020). https://doi.org/10.1007/s00397-020-01222-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-020-01222-8

Keywords

Navigation