Skip to main content
Log in

Kinetic modelling of ethanolic fermented tomato must (Lycopersicon esculentum Mill) in batch system: influence of sugar content in the chaptalization step and inoculum concentration

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work studies the production of alcoholic beverages using tomato pulp, aiming at characterizing fermentation kinetics by modelling. Batch fermentation tests were carried out in order to assess inoculum concentration, ranging between 1, 3 and 5 g/L, with sugar concentrations at 55, 110, 230 g/L and tomato must containing 20 g/L of pulp concentration at 30 °C and pH 5.5. The best process operating conditions were identified as 230 g/L of sugar and 5 g/L of inoculum, having obtained a tomato wine with 101.5 g/L of ethanol and 99.5% of biochemical efficiency. The kinetic constants obtained (µmax) ranged between 0.2–0.5 day−1 and a half-saturation constant (Ks) with an average value of 17.90 ± 1.08 g/L, exhibiting slow fermentation, with the exponential process lasting for approximately 4 days. The substrate consumption rates and ethanol yield reached maximum values of 4.54 g/(L⋅h) and 1.39 g/(L⋅h), respectively. The conversion factors of YX/S and YP/S were obtained as a function of initial substrate concentration (sucrose) and inoculum concentration. No sharp inhibition rates were observed, with only the Monod Model being used to describe the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oliveira ENA, Fernandes AV, Rocha EMFF, Feitosa BF, Freitas PVC (2016) Cinética de fermentação de fermentado alcoólico misto de água de coco e tamarindo. Congresso Técnico Científico Engenharia Agronomia 6(1):54–56

    Google Scholar 

  2. Mello LMR (2019) Vitivinicultura Brasileira: panorama 2018. Embrapa Uva e Vinho, Bento Gonçalves

    Google Scholar 

  3. Monteiro CS, Balbi ME, Miguel OG, Penteado PTPS, Haracemiv SMC (2008) Qualidade nutricional e antioxidante do tomate “tipo italiano. Alim Nutr 19(1):25–31

    CAS  Google Scholar 

  4. Heredia A, Peinado I, Rosa E, Andrés A (2010) Effect of osmotic pré-treatment and microwave heating on lycopene degradation and isomerization in cherry tomato. Food Chem 123(1):92–98

    CAS  Google Scholar 

  5. Shen YC, Chen SL, Wang CK (2014) Contribution of tomato phenolics to antioxidation and down-regulation of blood lipids. J Agric Food Chem 55(16):6475–6480

    Google Scholar 

  6. Companhia Nacional de Abastecimento – CONAB. (2019) Acompanhamento da safra brasileira: Tomate, safra 2018 ⁄ 2019.

  7. Vucurovic DG, Dodic SN, Grahovac JA, Popov SD, Nedeljkovic NM (2012) Kinetic modelling of batch ethanol production from Sugar beet raw juice. Appl Energy 99:192–197

    Google Scholar 

  8. Phisalaphong M, Srirattana N, Tnathapanichakoon W (2006) Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation. Biochem Eng J 28:36–43

    CAS  Google Scholar 

  9. Monod J (1942) Techerches sur la croissance des cultures bacteriennes. Hermann & Cie, Paris

    Google Scholar 

  10. Jang SY, Woo SM, Jo YJ, Kim OM, Kim IH, Jeong YJ (2010) Quality characteristics of tomato wine on fermentation conditions. J Korean Soc Food Sci Nutr 39(3):443–448

    CAS  Google Scholar 

  11. Many JN, Radhika B, Ganesan T (2014) Study on tomato wine production and optimization. J Environ Sci Toxicol Food Technol IOSR-JESTFT, 2319–2399. Volume 8, Issue 1 Ver. IV, pp 97–100.

  12. Schmidell W, Facciotti MCR (2001) Biorreatores e Processos Fermentativos. In: Schmidell W et al (Coord.) Biotecnologia Industrial: Engenharia Bioquímica. Edgar Blücher, São Paulo, 23: 179–192.

  13. Aggelis CD, Shiotane T (2007) Repair evaluation of concrete cracks using surface and through-transmission wave measurements. Cement Concr Compos 29(9):700–711

    CAS  Google Scholar 

  14. De Paula B, Carvalho Filho CD, Matta VM, Menezes JS, Lima PC, Pinto CO, Conceição LEMG (2012) Produção e caracterização físicoquímica de fermentado de umbu. Ciência Rural 42(9):234–235

    Google Scholar 

  15. Venturini WGF (2010) Bebidas alcoólicas: ciência e tecnologia. 1.ed. São Paulo: Editora Blucher, p. 85;

  16. Chitarra MIF, Chitarra AB (2005) Pós-colheita de frutas e hortaliças: fisiologia e manuseio. 2. ed. Lavras: UFLA, 785: 293.

  17. Borguini RG, Mattos FL (2006) Análise do Consumo de Alimentos Orgânicos no Brasil. In: CONGRESSO BRASILEIRO DE ECONOMIA E SOCIOLOGIA RURAL, Passo Fundo, Anais, 40:38.

  18. Lee JH, Cho HD, Jeong JH, Lee MK, Jeong YK, Shim KH, Seo KI (2013) New vinegar produced by tomato suppresses adipocyte differentiation and fat accumulation in 3T3-L1 cells and obese rat model. Food Chem 141:3241–3249

    CAS  PubMed  Google Scholar 

  19. De Valim FP, Oliveira EA, Kamimura ES, Alves VD, Maldonado RR (2016) Produção de Star Fruit alcoólica fermentada bebidas. Indian J Microbiol 56(4):476–481

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Almeida SDS, Alves WAL, de Araújo SA, Santana JCC, Narain N, de Souza RR (2014) Use of simulated annealing in standardization and optimization of the acerola wine production. Food Sci Technol 34(2):292–297

    Google Scholar 

  21. Dantas CEA, Silva JLA (2017) Fermentado alcoólico de umbu: Produção, cinética de fermentação e caracterização físico-química. Holos 2:108–121

    Google Scholar 

  22. Almeida MM, Silva FLH, Conrado LS, Mota JC, Freitas RMM (2011) Estudo cinético e caracterização da bebida fermentada do Cereus jamacaru P. DC. Rev Verdes 6(2):176–183

    Google Scholar 

  23. Souza DS, Baptista JAA, Zan RA (2018) Produção e avaliação físico-química dos vinhos (fermentados) seco e suave a partir do araçá-boi (Eugenia stipitata mcvaugh). MultiSci J 1(13):27–29

    Google Scholar 

  24. Lacerda MN, Vale BLS, Almeida AS, Teodoro MS, Santos VB (2016) Caracterização física e físico-química de tomates orgânicos utilizando diferentes compostos. Enciclopédia Biosfera 13(24):240

    Google Scholar 

  25. Rosa CLS, Soares AG, De Freitas DGC, Rocha MC, Ferreira JCS, Godoy RLO (2011) Caracterização Físico- Química, nutricional e instrumental de quatro acessos de tomate italiano (Lycopersicum Esculentum Mill) Do Tipo ‘Heirloom’ Produzido Sob Manejo Orgânico Para Elaboração De Polpa Concentrada. Alim Nutr 22(4):649–656

    CAS  Google Scholar 

  26. Araujo JC, Telhado SFP (2015) Organic food: a comparative study of the effect of tomato cultivars and cultivation conditions on the physico-chemical properties. Foods 4:263–270

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vieira RC, Dos Brainer NS, Da Holanda, RSO, Vieira, WT, Almeida, RMRG, Solleti, JI, Balliano TL (2018) Mapeamento prospectivo das tecnologias envolvidas na modelagem do fermentado alcoólico do Tomate e seus resíduos. Caderno de Procpecção – Salvador, 11(5): 1712–1725.

  28. Izumi T, Kokubo S, Takaoka N, Kakudo Y (2018) Method For Producing Fermented Alcoholic Beverage Having Excellent Chromaticity And Flavor. Depositante: Takaaki Izumi. JP6139883B2. Depósito: 09/11/2016. Concessão: 17/05/2018;

  29. Nogueira A, Wosiacki G, Alberti A, Carvalho JRF (2015) Desenvolvimento De Fermentado Frisante De Maçã Usando Tecnologia Européia De Processamento E Atributos De Aceitação Do Consumidor Brasileiro. Depositante: Universidade Estadual De Ponta Grossa (Br/Pr). BR 10 2013 017034 8. Depósito: 02/07/2013; Concessão: 04/08/2015.

  30. Ferreira NBS, Asquieri ER, Damiani C (2015) Processo Para Elaboração De Um Fermentado Alcoólico De Polpa De Baru (Dipteryx Alata Vog.). Depositante: Universidade Federal De Goiás (Br/Go). BR 10 2013 008434 4. Depósito: 08/04/2013; Concessão: 23/06/2015.

  31. Brandão CC, Damiani C, Asquieri ER (2017) Fermentado Alcoólico De Yacon (Smallanthus Sonchifolia): Processo De Obtenção E Suas Aplicações. Depositante: Universidade Federal De Goiás (Br/Go). BR 10 2012 005273 3. Depósito: 09/03/2012. Concessão: 28/03/2017.

  32. Dorignac E, Quiport AD, Tbaikhi A (2018) Cepas De Levedura Para Bebidas Fermentadas E Particularmente Para Vinho. Depositante: LESAFFRE ET COMPAGNIE (FR). BR 11 2018 005586 7. Depósito: 20/09/2016. Concessão: 02/10/2018.

  33. IAL – Instituto Adolfo Lutz. Métodos físico-químicos para análises de alimentos (2005) 4. ed. São Paulo: InstitutoAldolfo Lutz, 1018p.

  34. AOAC (2002) Official methods of analysis of the association of official analytical chemistry, 17th edn. William Horwitz, Gaithersburg

    Google Scholar 

  35. Trevelyan WE, Forrest RS, Hanrrison JS (1952) Determination of yeast carbohydrates with the anthrone reagent. Nature 170(4328):626–627

    CAS  PubMed  Google Scholar 

  36. Henneberg W, Stohmann F (1964) Beitrage zur Bergrundung einer rationnellen Futterrung der Wuederkauer, V. 2, Schwetschke, Braunschweig, Germany (cited by Giger-Reverdin, 1995. Anim Feed Sci Technol 55:295–364

    Google Scholar 

  37. Silva CEF, Meneghello D, Bertucco AA (2018) A systematic study regarding hydrolysis and ethanol fermentation from microalgal biomass. Biocatal Agric Biotechnol 14:172–182

    Google Scholar 

  38. Sonego JLS, Lemos DA, Pinto CEM, Cruz AJG, Badino AC (2016) Extractive fed-batch ethanol fermentation with CO2 stripping in a bubble column bioreactor: experiment and modeling. Energy Fuels 30:748–757

    CAS  Google Scholar 

  39. Costa RTRV, Silva JL, Nascimento AM, Souto MV (2017) Kinetics of mixed beverage production of honey from bees and strawberries. Rev Verde Agroecol Desenvolv Sust 12(1):90–94

    Google Scholar 

  40. Berg JMT, Tymoczko JL, Stryer L (2014) Bioquímica, 7th edn. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  41. Jones E, Oliphant T, Peterson P et al (2001) SciPy: open source scientific tools for Python. Disponível em: https://www.scipy.org/

  42. Shami NJIE, Moreira EAM (2004) Licopeno como agente antioxidante. Ver Nutr Campinas 17(2):227–236

    CAS  Google Scholar 

  43. da Fontan RCI, Verissimo LAC, Silva WS, Bonomo RCF, Veloso CM (2011) Cinética da fermentação alcoolica na elaboração de vinho de melancia. B. CEPPA 29(2):203–210

    CAS  Google Scholar 

  44. Oliveira JPM, Neto JC, Silva SS, Santos AS (2015) Production of alcoholic fermented orange. Rev Verde Agroecol Desenvolv Sust 10(3):35–41

    Google Scholar 

  45. Tessaro D, Larsen AC, Dallago RC, Damasceno SG, Sene L, Coelho SRM (2010) Avaliação das fermentações alcoólica e acética para produção de vinagre a partir de suco de laranja. Acta Sci Technol 32(2):201–205

    CAS  Google Scholar 

  46. Guilherme DO, Pinho L, Costa CA, Almeida AC, Paes MCD, Rodrigues RJA, Cavalcanti TFM, Filho SCT, Menezes JBC, Sales SS (2008) Análise sensorial e físico-química em frutos de tomate cereja orgânicos. Hortic Bras 26(2):456

    Google Scholar 

  47. TACO - Tabela brasileira de composição de alimentos (2011) NEPA (Núcleo de Estudos e pesquisas em Alimentação), UNICAMP.- 4. ed. rev. e ampl., BookEditora, Campinas-SP, 161.

  48. Cheung LM, Cheung PCK, Ooi VEC (2003) Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 80(2):249–255

    Google Scholar 

  49. Sahlin E, Savage GP, Lister CE (2004) Investigation of the antioxidant properties of tomatoes after processing. J Food Compos Anal 15(5):635–647

    Google Scholar 

  50. Leong LP, Shui G (2002) An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76:69–75

    CAS  Google Scholar 

  51. Comelli RN, Seluy LG, Isla MA (2016) Performance of several Saccharomyces strains for the alcoholic fermentation of sugar-sweetened high-strength wastewaters: comparative analysis and kinetic modelling. New Biotechnol 33:874–882

    CAS  Google Scholar 

  52. Putra MD, Abasaeed AEA (2018) more generalized kinetic model for binary sbstrates fermentations. Process Biochem 75:31–38

    CAS  Google Scholar 

  53. Rivera EC, Yamakawa CK, Saad MBW, Atala DIP, Ambrosio WB, Bonomi A, Junior JN, Rossell CEV (2017) Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions. Biochem Eng J 119:42–51

    Google Scholar 

  54. Ponce GHSF, Neto JM, Jesus SS, Miranda JCC, Filho RM, Andrade RR, Maciel MRW (2016) Sugarcane molasses fermentation with in situ gas stripping using low and moderate sugar concentrations for ethanol production: experimental data and modeling. Biochem Eng J 110:152–161

    CAS  Google Scholar 

  55. Srimachai T, Nuithitikul K, Sompong O, Kongjan P, Panpong K (2015) Optimization and kinetic modeling of ethanol production from oil palm frond juice in batch fermentation. Energy Procedia 1(79):111–118

    Google Scholar 

  56. Parcunev I, Naydenova V, Kostov G, Yanakiev Y, Popova Z, Kaneva M, Ignatov I (2005) Modeling of alcohol fermentation in brewing—some practical approaches. In: Proceedings 26th European Conference on Modelling and Simulation, vol 4, pp 2002–2023.

  57. Esfahanian M, Rad AS, Khoshhal S, Najafpour G, Asghari B (2016) Mathematical modeling of continuous ethanol fermentation in a membrane bioreactor by pervaporation compared to conventional system: genetic algorithm. Biores Technol 212:62–71

    CAS  Google Scholar 

  58. Scheiblauer J, Scheiner S, Joksch M, Kavsek B (2018) Fermentation of Saccharomyces cerevisiae – Combining kinetic modeling and optimization techniques points out avenues to effective process design. J Theor Biol 453:125–135

    CAS  PubMed  Google Scholar 

  59. Veloso IIK, Rodrigues KCS, Sonego JCS, Cruz AJG, Badino AC (2018) Fed-batch ethanol fermentation at low temperature as a way to obtain highly concentrated alcoholic wines: modeling and optimization. Biochem Eng J 141:60–70

    Google Scholar 

  60. Sarris D, Papanikolaou S (2015) Biotechnological production of ethanol: biochemistry, processes and technologies. Eng Life Sci 16(4):307–324

    Google Scholar 

  61. Pronk JT, Steensma HY, Dijken JPV (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12(16):12–24

    Google Scholar 

  62. Gaden EL Jr (1959) Fermentation process kinetics. J Biochem Microbiol Technol Eng 4:413–429

    Google Scholar 

  63. Deindoerfer FH (1960) Fermentation kinetics and model processes. Ind Eng Chem 52(1):63–64

    Google Scholar 

  64. Dias MOS, Filho RM, Mantelatto PE, Cavalett O, Rossell CEV, Bonomi A, Leal MRLV (2018) Sugarcane processing for ethanol and sugar in Brazil. Environ Dev 15:35–51

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank the CAPES and CNPq for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Eduardo De Farias Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, R.C., De Farias Silva, C.E., da Silva, L.O.M. et al. Kinetic modelling of ethanolic fermented tomato must (Lycopersicon esculentum Mill) in batch system: influence of sugar content in the chaptalization step and inoculum concentration. Reac Kinet Mech Cat 130, 837–862 (2020). https://doi.org/10.1007/s11144-020-01810-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01810-y

Keywords

Navigation