Skip to main content
Log in

Nonlinear thermal behaviors of the inter-shaft bearing in a dual-rotor system subjected to the dynamic load

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a new theoretical method to investigate the thermal behaviors of the inter-shaft bearing considering the nonlinear dynamic characteristics of a dual-rotor system by combining heat transfer and nonlinear dynamics. The nonlinearities of the inter-shaft bearing, including the Hertzian contact and the radial clearance, are considered during the dynamic modeling for the system. The dynamic load of the inter-shaft bearing is defined according to the nonlinear dynamic responses of the system. Therefore, some fundamental nonlinear phenomena, i.e., jump and bi-stable phenomena happen to the dynamic load. It makes the dynamic load more appropriate to describe the actual load of the inter-shaft bearing than the static load. Furthermore, a steady-state heat transfer model for the inter-shaft bearing subjected to the dynamic load can be set up with the help of Palmgren’s empirical formula. The variation of temperatures with the rotation speed is obtained by using the Gauss–Seidel iteration. Temperatures of the inter-shaft bearing also show nonlinear thermal behaviors, i.e., jump and bi-stable phenomena. It implies the nonlinear dynamic behaviors of the system have a great impact on the thermal behaviors of the inter-shaft bearing. Moreover, an exhaustive parametric analysis for temperatures and nonlinear thermal behaviors of the inter-shaft bearing affected by dynamic parameters (including the rotation speed ratio, unbalances of rotors, the radial clearance, the stiffness and the roller number of the inter-shaft bearing) and thermal parameters (including the lubricant viscosity and the ambient temperature) is carried out. The results show that the rotation speed ratio has a significant influence on both temperatures and nonlinear thermal behaviors, other dynamic parameters mainly affect nonlinear thermal behaviors, while thermal parameters only affect temperatures. This unique discovery indicates the thermal behaviors of the inter-shaft bearing could be much more complex because of the nonlinear dynamic characteristics of the dual-rotor system. The obtained results will contribute to a better understanding of the nonlinear thermal behaviors of bearings and profoundly reveal the mechanism of the nonlinear thermal behaviors of bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

M :

Total friction torque

M l :

Friction torque due to the load

M ν :

Friction torque due to the viscosity

Q :

Total FH

Q l :

Load FH

Q ν :

Viscosity FH

Q r :

FH distributed to rollers

Q i :

FH distributed to inner race

Q o :

FH distributed to outer race

f l :

A coefficient depends on the type of roller bearing

f ν :

A coefficient depends on the type of roller bearing and the type of lubrication

r LP :

Inner radius of LP rotor

d :

Nominal bore

r i :

Radius of inner race

D m :

Pitch diameter

r o :

Radius of outer race

D :

Nominal outside diameter

r HP :

Outside radius of HP outer

d r :

Roller diameter

a r :

Roller length

K b :

Stiffness of the inter-shaft bearing

B :

Width of the inter-shaft bearing

A :

Area

∑ ρ i :

Curvature sum of rollers-inner race contact pair

∑ ρ o :

Curvature sum of rollers-outer race contact pair

e 1 :

LP rotor’s unbalance

h :

Convective heat transfer coefficient

ε m :

Aspect ratio

V :

Line speed

k steel :

Thermal conductivity of steel

ν :

Kinematic viscosity of the lubricant

α :

Thermal diffusivity

α steel :

Thermal diffusivity of steel

Adown :

“Jump point”

Bdown :

“Jump point”

\( \omega_{{{\text{A}}_{\text{down}} }} \) :

“Frequency of jump point”

\( \omega_{{{\text{B}}_{\text{down}} }} \) :

“Frequency of jump point”

\( \Delta T_{{{\text{A}}_{\text{down}} }} \) :

“Jump amplitude”

\( \Delta T_{{{\text{B}}_{\text{down}} }} \) :

“Jump amplitude”

\( \Delta \omega_{\text{A}} \) :

“Bi-stable interval”

T :

Common temperature

T L :

Temperature of lubricant

T r :

Temperature of rollers

T i :

Temperature of inner race

T o :

Temperature of outer race

T LP :

Temperature of the portion of LP rotor contact inner race

T HP :

Temperature of the portion of HP rotor contact outer race

T :

Ambient temperature

R ri :

Thermal resistance of rollers-inner race

R ro :

Thermal resistance of rollers-outer race

R Lr :

Thermal resistance of lubricant rollers

R Li :

Thermal resistance of lubricant-inner race

R Lo :

Thermal resistance of lubricant-outer race

R i :

Thermal resistance of inner race-LP rotor

R o :

Thermal resistance of outer race-HP rotor

R LP :

Thermal resistance of LP rotor-ambient

R HP :

Thermal resistance of HP rotor-ambient

F b :

Dynamic load of the inter-shaft bearing

F n :

Normal force between roller and races

2δ0 :

Radial clearance of the inter-shaft bearing

N b :

Roller number of the inter-shaft bearing

n b :

Stressed roller number

ω 1 :

Rotation speed of LP rotor

ω 2 :

Rotation speed of HP rotor

λ :

Rotation speed ratio

e 2 :

HP rotor’s unbalance

Nu:

Nusselt number

Re:

Reynolds number

Pr:

Prandtl number

Ta:

Taylor number

Bi:

Biot number

Pe:

Peclet number

Pe* :

Modified Peclet number

Aup :

“Jump point”

Bup :

“Jump point”

\( \omega_{{{\text{A}}_{\text{up}} }} \) :

“Frequency of jump point”

\( \omega_{{{\text{B}}_{\text{up}} }} \) :

“Frequency of jump point”

\( \Delta T_{{{\text{A}}_{\text{up}} }} \) :

“Jump amplitude”

\( \Delta T_{{{\text{B}}_{\text{up}} }} \) :

“Jump amplitude”

\( \Delta \omega_{\text{B}} \) :

“Bi-stable interval”

References

  1. Li, Q.H., Hamilton, J.F.: Investigation of the transient response of a dual-rotor system with intershaft squeeze-film damper. J. Eng. Gas Turb. Power 108, 613–618 (1985)

    Google Scholar 

  2. Holmes, R., Dede, M.M.: Non-linear phenomena in aero-engine rotor vibration. Arch. Proc. Inst. Mech. Eng. Part A J. Power Eng. 203(11), 25–34 (1989)

    Google Scholar 

  3. Yamamoto, T.: On critical speeds of a shaft supported by a ball bearing. Trans. JSME 21, 182–192 (1955)

    Google Scholar 

  4. Fukata, S., Gad, E.H., Kondou, T., Ayabe, T., Tamura, H.: On the radial vibrations of ball bearings (computer simulation). Bull. JSME 28(239), 899–904 (1985)

    Google Scholar 

  5. Mevel, B., Guyader, J.L.: Routes to chaos in ball bearings. J. Sound Vib. 162(3), 471–487 (1993)

    MATH  Google Scholar 

  6. Tiwari, M., Gupta, K., Prakash, O.: Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. J. Sound Vib. 238(5), 723–756 (2000)

    Google Scholar 

  7. Tiwari, M., Gupta, K., Prakash, O.: Dynamic response of an unbalanced rotor supported on ball bearings. J. Sound Vib. 238(5), 757–779 (2000)

    Google Scholar 

  8. Ghafari, S.H., Abdel-Rahman, E.M., Golnaraghi, F., Ismail, F.: Vibrations of balanced fault-free ball bearings. J. Sound Vib. 329(9), 1332–1347 (2010)

    Google Scholar 

  9. Bai, C.Q., Zhang, H.Y., Xu, Q.Y.: Subharmonic resonance of a symmetric ball bearing-rotor system. Int. J. Non-Linear Mech. 50, 1–10 (2013)

    Google Scholar 

  10. Zhang, Z.Y., Chen, Y.S., Cao, Q.J.: Bifurcations and hysteresis of varying compliance vibrations in the primary parametric resonance for a ball bearing. J. Sound Vib. 350, 171–184 (2015)

    Google Scholar 

  11. Zhang, Z.Y., Chen, Y.S., Li, Z.G.: Influencing factors of the dynamic hysteresis in varying compliance vibrations of a ball bearing. Sci. China Technol. Sci. 58(5), 775–782 (2015)

    Google Scholar 

  12. Palmgren, A., Ruley, B.: Ball and Roller Bearing Engineering. SKF Industries, inc., Philadelphia (1945)

    Google Scholar 

  13. T.A. Harris, M.N. Kotzalas. Essential Concepts of Bearing Technology. Taylor & Francis, London, 2006, pp. 133–135

  14. Winer, W.O., Bair, S., Gecim, B.: Thermal resistance of a tapered roller bearing. Tribol. Trans. 29(4), 539–547 (1986)

    Google Scholar 

  15. DeMul, J.M., Vree, J.M., Maas, D.A.: Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction—art I: general theory and application to ball bearings. J. Tribol. (1989). https://doi.org/10.1115/1.3261864

    Article  Google Scholar 

  16. DeMul, J.M., Vree, J.M., Maas, D.A.: Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction—part II: application to roller bearings and experimental verification. J. Tribol. (1989). https://doi.org/10.1115/1.3261865

    Article  Google Scholar 

  17. Jorgensen, B.R., Shin, Y.C.: Dynamics of machine tool spindle/bearing systems under thermal growth. J. Tribol. 119(4), 875–882 (1997)

    Google Scholar 

  18. Stein, J.L., Tu, J.F.: A state-space model for monitoring thermally induced preload in anti-friction spindle bearings of high-speed machine tools. J. Dyn. Syst. Meas. Contr. 116(3), 372–386 (1994)

    MATH  Google Scholar 

  19. Sun, G., Palazzolo, A., Provenza, A., Lawrence, C., Carney, K.: Long duration blade loss simulations including thermal growths for dual-rotor gas turbine engine. J. Sound Vib. 316, 147–163 (2008)

    Google Scholar 

  20. Takabi, J., Khonsari, M.M.: Experimental testing and thermal analysis of ball bearings. Tribol. Int. 60, 93–103 (2013)

    Google Scholar 

  21. Ai, S.Y., Wang, W., Wang, Y., Zhao, Z.: Temperature rise of double-row tapered roller bearings analyzed with the thermal network method. Tribol. Int. 87, 11–22 (2015)

    Google Scholar 

  22. Than, V.T., Huang, J.H.: Nonlinear thermal effects on high-speed spindle bearings subjected to preload. Tribol. Int. 96, 361–372 (2016)

    Google Scholar 

  23. Wang, N.F., Liu, C., Jiang, D.X., Behdinan, K.: Casing vibration response prediction of dual-rotor-blade-casing system with blade-casing rubbing. Mech. Syst. Signal Pr. 118, 61–77 (2019)

    Google Scholar 

  24. Lu, Z.Y., Chen, Y.S., Li, H.L., Hou, L.: Reversible model-simplifying method for aero-engine rotor systems. J. Aerosp. Power 31(1), 57–64 (2016)

    Google Scholar 

  25. Sun, C.Z., Chen, Y.S., Hou, L.: Steady-state response characteristics of a dual-rotor system induced by rub-impact. Nonlinear Dyn. 86(1), 91–105 (2016)

    Google Scholar 

  26. Gao, P., Hou, L., Yang, R., Chen, Y.S.: Local defect modelling and nonlinear dynamic analysis for the inter-shaft bearing in a dual-rotor system. Appl. Math. Model. 68, 29–47 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Gao, P., Hou, L., Chen, Y.S.: Nonlinear vibration characteristics of a dual-rotor system with inter-shaft bearing. J. Vib. Shock 38(15), 1–10 (2019)

    Google Scholar 

  28. Yang, R., Jin, Y.L., Hou, L., Chen, Y.S.: Study for ball bearing outer race characteristic defect frequency based on nonlinear dynamics analysis. Nonlinear Dyn. 90, 781–796 (2017)

    Google Scholar 

  29. Hou, L., Chen, Y.S., Fu, Y.Q., Chen, H.Z., Lu, Z.Y., Liu, Z.S.: Application of the HB-AFT method to the primary resonance analysis of a dual-rotor system. Nonlinear Dyn. 88(4), 2531–2551 (2017)

    Google Scholar 

  30. Holman, J.P.: Heat Transfer, 10th edn, pp. 51–52. McGraw Hill, New York (2010)

    Google Scholar 

  31. Muzychka, Y.S., Yovanovich, M.M.: Thermal resistance models for non-circular moving heat sources on a half space. J. Heat Transf. 123(4), 624–632 (2001)

    Google Scholar 

  32. Fand, R.M.: Heat transfer by forced convection from a cylinder to water in crossflow. J. Heat Mass. Transf. 8(7), 995–1010 (1965)

    Google Scholar 

  33. Gazley, C.: Heat-transfer characteristics of the rotational and axial flow between concentric cylinders. Trans. ASME 108, 79–90 (1958)

    Google Scholar 

  34. Yang, Z.L., Zhuo, X.R., Yang, C., Song, Y.Z.: An experimental research on convective heat transfer on the surface of horizontal cylinder rotating with high speed. Ind. Heat. 5, 17–20 (2002)

    Google Scholar 

  35. Ruhe, A.: Properties of a matrix with a very ill-conditioned eigenproblem. Numer. Math. 15(1), 57–60 (1970)

    MathSciNet  MATH  Google Scholar 

  36. Hu, Q.H., Deng, S.E., Teng, H.F.: Optimization of rotor-bearing system with nonlinear dynamics considering internal clearance. J. Aerosp. Power 26(9), 2154–2160 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the financial supports from the National Major Science and Technology Projects of China (Grant No. 2017-IV-0008-0045), the National Basic Research Program of China (973 Program) (Grant No. 2015CB057400) and the National Natural Science Foundation of China (Grant Nos. 11972129 and 11602070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coefficient matrix A is a symmetric matrix, which is shown as follows:

$$A= \left[ {\begin{array}{*{20}c} { - \frac{1}{{R_{\text{ri}} }} - \frac{1}{{R_{\text{ro}} }} - \frac{1}{{R_{\text{Lr}} }}} & {\frac{1}{{R_{\text{ri}} }}} & {\frac{1}{{R_{\text{ro}} }}} & {} & {} & {\frac{1}{{R_{\text{Lr}} }}} \\ {\frac{1}{{R_{\text{ri}} }}} & { - \frac{1}{{R_{\text{ri}} }} - \frac{1}{{R_{\text{i}} }} - \frac{1}{{R_{\text{Li}} }}} & {} & {\frac{1}{{R_{\text{i}} }}} & {} & {\frac{1}{{R_{\text{Li}} }}} \\ {\frac{1}{{R_{\text{ro}} }}} & {} & { - \frac{1}{{R_{\text{ro}} }} - \frac{1}{{R_{\text{o}} }} - \frac{1}{{R_{\text{Lo}} }}} & {} & {\frac{1}{{R_{\text{o}} }}} & {\frac{1}{{R_{\text{Lo}} }}} \\ {} & {\frac{1}{{R_{\text{i}} }}} & {} & { - \frac{1}{{R_{\text{i}} }} - \frac{1}{{R_{\text{LP}} }}} & {} & {} \\ {} & {} & {\frac{1}{{R_{\text{o}} }}} & {} & { - \frac{1}{{R_{\text{o}} }} - \frac{1}{{R_{\text{HP}} }}} & {} \\ {\frac{1}{{R_{\text{Lr}} }}} & {\frac{1}{{R_{\text{Li}} }}} & {\frac{1}{{R_{\text{Lo}} }}} & {} & {} & { - \frac{1}{{R_{\text{Lr}} }} - \frac{1}{{R_{\text{Li}} }} - \frac{1}{{R_{\text{Lo}} }}} \\ \end{array} } \right] $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Chen, Y. & Hou, L. Nonlinear thermal behaviors of the inter-shaft bearing in a dual-rotor system subjected to the dynamic load. Nonlinear Dyn 101, 191–209 (2020). https://doi.org/10.1007/s11071-020-05753-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05753-w

Keywords

Navigation