Skip to main content
Log in

Dynamical analysis and anti-oscillation-based adaptive control of the FO arch MEMS with optimality

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper mainly investigates dynamical analysis and anti-oscillation-based adaptive control issues of the fractional-order (FO) arch microelectromechanical system (MEMS) with optimality. With the aid of phase diagram and Lyapunov exponent, the dynamical analysis reveals that chaotic oscillation originated in non-equilibrium interaction of potential energy can deteriorate the performance of the FO arch MEMS under different FOs and excitation amplitudes. During the design process, a recurrent non-singleton type-2 fuzzy neural network with a transformation is employed to approximate uncertain function and the Nussbaum function is used to tackle the problem of unknown control direction from actuation characteristic in the field of Caputo fractional derivative. Meanwhile, a tracking differentiator based on the hyperbolic sine function is designed to solve the repeated differentiation of virtual control because of complicated FO calculation. Then, an anti-oscillation-based adaptive control scheme fused with the Nussbaum function, neural network, tracking differentiator and optimal control is developed in the framework of backstepping by means of continuous frequency distributed model. The asymptotic stability of the proposed solution is proved based on the Lyapunov stability criterion. Finally, simulation results validate the feasibility of the presented scheme under multi-step methods of numerical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Tusset, A.M., Janzen, F.C., Rocha, R.T., Balthazar, J.M.: On an optimal control applied in MEMS oscillator with chaotic behavior including fractional order. Complexity 2018, 1–12 (2018). https://doi.org/10.1155/2018/5817597

    Article  MATH  Google Scholar 

  2. Peng, Y., Sun, K., He, S., Wang, L.: Comments on “Discrete fractional logistic map and its chaos” [Nonlinear Dyn. 75, 283–287 (2014)]. Nonlinear Dyn. 97, 897–901 (2019)

    Google Scholar 

  3. Luo, S., Li, J., Li, S., Hu, J.: Dynamical analysis of the fractional-order centrifugal flywheel governor system and its accelerated adaptive stabilization with the optimality. Int. J. Elec. Power Energy Syst. 118, 105792 (2020)

    Google Scholar 

  4. Fang, Y., Fei, J., Cao, D.: Adaptive fuzzy-neural fractional-order current control of active power filter with finite-time sliding controller. Int. J. Fuzzy Syst. 21, 1533–1543 (2019)

    MathSciNet  Google Scholar 

  5. Garrappa, R.: Neglecting nonlocality leads to unreliable numerical methods for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 70, 302–306 (2019)

    MathSciNet  Google Scholar 

  6. Luo, S., Lewis, F.L., Song, Y., Ouakad, H.M.: Accelerated adaptive fuzzy optimal control of three coupled fractional-order chaotic electromechanical transducers. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/tfuzz.2020.2984998

    Article  Google Scholar 

  7. Behinfaraz, R., Badamchizadeh, M.A.: Synchronization of different fractional order chaotic systems with time-varying parameter and orders. ISA Trans. 80, 399–410 (2018)

    Google Scholar 

  8. Ouakad, H.M., Sedighi, H.M.: Static response and free vibration of MEMS arches assuming out-of-plane actuation pattern. Int. J. Nonlinear Mech. 110, 44–57 (2019)

    Google Scholar 

  9. Tausiff, M., Ouakad, H.M., Alqahtani, H., Alofi, A.: Local nonlinear dynamics of MEMS arches actuated by fringing-field electrostatic actuation. Nonlinear Dyn. 95, 2907–2921 (2019)

    Google Scholar 

  10. Su, Z., Li, Y., Yang, G.: Composition perception algorithm using social robot audition for mandarin Chinese. IEEE Access 8, 8768–8782 (2020)

    Google Scholar 

  11. Fei, J., Liang, X.: Adaptive backstepping fuzzy neural network fractional-order control of microgyroscope using a nonsingular terminal sliding mode controller. Complexity (2018). https://doi.org/10.1155/2018/5246074

    Article  MATH  Google Scholar 

  12. Tusset, A.M., Ribeiro, M.A., Lenz, W.B., et al.: Time delayed feedback control applied in an atomic force microscopy (AFM) model in fractional-order. J. Vib. Eng. Technol. 8, 327–335 (2020)

    Google Scholar 

  13. Gritli, H., Belghith, S., Khraief, N.: OGY-based control of chaos in semi-passive dynamic walking of a torso-driven biped robot. Nonlinear Dyn. 79, 1363–1384 (2015)

    MATH  Google Scholar 

  14. Li, X.F., Leung, C.S., Han, X.P., Liu, X.J., Chu, Y.D.: Complete (anti-)synchronization of chaotic systems with fully uncertain parameters by adaptive control. Nonlinear Dyn. 63, 263–275 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Sun, K., Li, Y., Tong, S.: Fuzzy adaptive output feedback optimal control design for strict-feedback nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47, 33–44 (2017)

    Google Scholar 

  16. Li, D., Chen, C.P., Liu, Y.-J., Tong, S.: Neural network controller design for a class of nonlinear delayed systems with time-varying full-state constraints. IEEE Trans. Neural Netw. Learn. Syst. 30, 2625–2636 (2019)

    MathSciNet  Google Scholar 

  17. Fang, L., Li, T., Li, Z., Li, R.: Adaptive terminal sliding mode control for anti-synchronization of uncertain chaotic systems. Nonlinear Dyn. 74, 991–1002 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Xu, C., Tong, D., Chen, Q., Zhou, W., Shi, P.: Exponential stability of Markovian jumping systems via adaptive sliding mode control. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/tsmc.2018.2884565

    Article  Google Scholar 

  19. Qi, D., Liu, M., Qiu, M., Zhang, S.: Exponential H synchronization of general discrete-time chaotic neural networks with or without time delays. IEEE Trans. Neural Netw. 21, 1358–1365 (2010)

    Google Scholar 

  20. Tong, D., Rao, P., Chen, Q., Ogorzalek, M.J., Li, X.: Exponential synchronization and phase locking of a multilayer Kuramoto-oscillator system with a pacemaker. Neurocomputing 308, 129–137 (2018)

    Google Scholar 

  21. Danca, M.-F., Fečkan, M., Kuznetsov, N.V., Chen, G.: Fractional-order PWC systems without zero Lyapunov exponents. Nonlinear Dyn. 92, 1061–1078 (2018)

    MATH  Google Scholar 

  22. He, S., Sun, K., Wang, H.: Dynamics and synchronization of conformable fractional-order hyperchaotic systems using the Homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 73, 146–164 (2019)

    MathSciNet  Google Scholar 

  23. He, W., David, A.O., Yin, Z., Sun, C.: Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Trans. Syst. Man Cybern. Syst. 46, 759–770 (2016)

    Google Scholar 

  24. Wang, Y., Hu, J.: Improved prescribed performance control for air-breathing hypersonic vehicles with unknown deadzone input nonlinearity. ISA Trans. 79, 95–107 (2018)

    Google Scholar 

  25. Chen, H., Sun, W.J., Sun, Z.D., Yeow, J.T.W.: Second-order sliding mode control of a 2D torsional MEMS micromirror with sidewall electrodes. J. Micromechan. Microeng. 23, 015006 (2013)

    Google Scholar 

  26. Sarraf, E.H., Sharma, M., Cretu, E.: Novel band-pass sliding mode control for driving MEMS-based resonators. Sens. Actuator 186, 154–162 (2012)

    Google Scholar 

  27. Wei, Y., Tse, P.W., Yao, Z., Wang, Y.: Adaptive backstepping output feedback control for a class of nonlinear fractional order systems. Nonlinear Dyn. 86, 1047–1056 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Das, S., Yadav, V.K.: Chaos control and function projective synchronization of fractional-order systems through the backstepping method. Theor. Math. Phys. 189, 1430–1439 (2016)

    MATH  Google Scholar 

  29. Liu, Y.-J., Gao, Y., Tong, S., Li, Y.: Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone. IEEE Trans. Fuzzy Syst. 24, 16–28 (2016)

    Google Scholar 

  30. Li, Y., Sun, K., Tong, S.: Observer-based adaptive fuzzy fault-tolerant optimal control for SISO nonlinear systems. IEEE Trans. Cybern. 49, 649–661 (2018)

    Google Scholar 

  31. Sun, J., Liu, C.: Distributed fuzzy adaptive backstepping optimal control for nonlinear multi-missile guidance systems with input saturation. IEEE Trans. Fuzzy Syst. 27, 447–461 (2019)

    Google Scholar 

  32. Yang, Y., Yue, D., Xue, Y.: Decentralized adaptive neural output feedback control of a class of large-scale time-delay systems with input saturation. J. Frankl. Inst. 352, 2129–2151 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Guoyuan, Q., Chen, Z., Yuan, Z.: New tracking-differentiator design and analysis of its stability and convergence. J. Syst. Eng. Electron. 15, 780–787 (2014)

    Google Scholar 

  34. Liu, H., Li, S., Wang, H., Sun, Y.: Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones. Inf. Sci. 454–455, 30–45 (2018)

    MathSciNet  Google Scholar 

  35. Liu, H., Li, S., Li, G., et al.: Adaptive controller design for a class of uncertain fractional-order nonlinear systems: an adaptive fuzzy approach. Int. J. Fuzzy Syst. 20, 366–379 (2018)

    MathSciNet  Google Scholar 

  36. Sheng, D., Wei, Y., Cheng, S., Yong, W.: Observer-based adaptive backstepping control for fractional order systems with input saturation. ISA Trans. 82, 18–29 (2018)

    Google Scholar 

  37. Tajaddodianfar, F., Pishkenari, H.N., Yazdi, M.R.H.: Prediction of chaos in electrostatically actuated arch micro-nano resonators: analytical approach. Commun. Nonlinear Sci. Numer. Simul. 30, 182–195 (2016)

    MathSciNet  Google Scholar 

  38. Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1, 826–839 (1994)

    Google Scholar 

  39. John, D.A., Banerjee, S., Bohannan, G.W., Biswas, K.: Solid-state fractional capacitor using MWCNT-epoxy nanocomposite. Appl. Phys. Lett. 110, 163504 (2017)

    Google Scholar 

  40. Enelund, M., Lesieutre, G.A.: Time domain modeling of damping using anelastic displacement fields and fractional calculus. Int. J. Solids Struct. 36, 4447–4472 (1999)

    MATH  Google Scholar 

  41. Song, Y., Guo, J., Huang, X.: Smooth neuroadaptive PI tracking control of nonlinear systems with unknown and nonsmooth actuation characteristics. IEEE Trans. Neural Netw. Learn. Syst. 28, 2183–2195 (2017)

    MathSciNet  Google Scholar 

  42. Song, Y., Shen, Z., He, L., Huang, X.: Neuroadaptive control of strict feedback systems with full-state constraints and unknown actuation characteristics: an inexpensive solution. IEEE Trans. Cybern. 48, 3126–3134 (2017)

    Google Scholar 

  43. Zhou, P., Bai, R.J., Zheng, J.M.: Stabilization of a fractional-order chaotic brushless DC motor via a single input. Nonlinear Dyn. 82, 519–525 (2015)

    MATH  Google Scholar 

  44. Sheng, D., Wei, Y., Cheng, S., Shuai, J.: Adaptive backstepping control for fractional order systems with input saturation. J. Frankl. Inst. 354, 2245–2268 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Li, Y., Tong, S., Li, T.: Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control directions and unknown dead zones. IEEE Trans. Fuzzy Syst. 23, 1228–1241 (2014)

    Google Scholar 

  46. Ji, N., Liu, J.: Vibration control for a flexible satellite with input constraint based on Nussbaum function via backstepping method. Aerosp. Sci. Technol. 77, 563–572 (2018)

    Google Scholar 

  47. Modares, H., Lewis, F.L., Jiang, Z.P.: H tracking control of completely unknown continuous-time systems via off-policy reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst. 26, 2550–2562 (2015)

    MathSciNet  Google Scholar 

  48. Luo, S., Lewis, F.L., Song, Y., Vamvoudakis, K.G.: Adaptive backstepping optimal control of a fractional-order chaotic magnetic-field electromechanical transducer. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-11020-05518-11075

    Article  Google Scholar 

  49. Tajaddodianfar, F., Yazdi, M.R.H., Pishkenari, H.N.: On the chaotic vibrations of electrostatically actuated arch micro/nano resonators: a parametric study. Int. J. Bifurc. Chaos 25, 1550106 (2015)

    MATH  Google Scholar 

  50. Luo, S., Li, S., Tajaddodianfar, F., Hu, J.: Adaptive synchronization of the fractional-order chaotic arch micro-electro-mechanical system via Chebyshev neural network. IEEE Sens. J. 18, 3524–3532 (2018)

    Google Scholar 

  51. Danca, M.-F., Fečkan, M., Kuznetsov, N.: Chaos control in the fractional order logistic map via impulses. Nonlinear Dyn. 98, 1219–1230 (2019)

    Google Scholar 

  52. Mohammadzadeh, A., Ghaemi, S., Kaynak, O.: Robust predictive synchronization of uncertain fractional-order time-delayed chaotic systems. Soft Comput. 23, 6883–6898 (2019)

    MATH  Google Scholar 

  53. Mohammadzadeh, A., Ghaemi, S.: Optimal synchronization of fractional-order chaotic systems subject to unknown fractional order, input nonlinearities and uncertain dynamic using type-2 fuzzy CMAC. Nonlinear Dyn. 88, 2993–3002 (2017)

    Google Scholar 

  54. Xi, Z., Feng, G., Jiang, Z.P., Cheng, D.: Output feedback exponential stabilization of uncertain chained systems. J. Frankl. Inst. 344, 36–57 (2007)

    MathSciNet  MATH  Google Scholar 

  55. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76, 924–941 (2003)

    MathSciNet  MATH  Google Scholar 

  56. Liu, H., Pan, Y., Li, S., Chen, Y.: Adaptive fuzzy backstepping control of fractional-order nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47, 2209–2217 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is funded by the Science and Technology Planning Project of Guizhou Province (Nos. [2020]1Y274 and [2018]5781), National Natural Science Foundation of China (No. 61863005) and Science and Technology Foundation of Guizhou Province (Nos. [2018]5702, [2020]6007, QKHZC [2019] 2814 and [2020]4Y056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Luo.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Li, S., Yang, G. et al. Dynamical analysis and anti-oscillation-based adaptive control of the FO arch MEMS with optimality. Nonlinear Dyn 101, 293–309 (2020). https://doi.org/10.1007/s11071-020-05752-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05752-x

Keywords

Navigation