Skip to main content
Log in

Highly regular rosette-shaped cathodoluminescence in GaN self-assembled nanodisks and nanorods

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Self-assembled GaN nanorods were grown by metal-organic chemical vapor deposition. A highly regular rosette-shaped cathodoluminescence pattern in the GaN nanorods is observed, where its origin is helpful to deepen the understanding of GaN nanorod growth. The pattern forms at the very early stages of nanorod growth, which consists of yellow luminescence at the edges and the non-luminous region at six vertices of the hexagon. To clarify its origin, we carried out detailed cathodoluminescence studies, electron microscopy studies and nanoscale secondary ion mass spectrometry at both the nanorod surface and cross-section. We found the pattern is not related to optical resonance modes or polarity inversion, which are commonly reported in GaN nanostructures. After chemical composition and strain analysis, we found higher carbon and nitrogen cluster concentration and large compressive strain at the pattern area. The pattern formation may relate to facet preferential distribution of non-radiative recombination centers related to excess carbon/nitrogen. This work provides an insight into strain distribution and defect-related emission in GaN nanorod, which is critical for future optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ebaid, M.; Kang, J. H.; Lim, S. H.; Ha, J. S.; Lee, J. K.; Cho, Y. H.; Ryu, S. W. Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires. Nano Energy2015, 12, 215–223.

    CAS  Google Scholar 

  2. Golam Sarwar, A. T. M.; Myers, R. C. Exploiting piezoelectric charge for high performance graded InGaN nanowire solar cells. Appl. Phys. Lett.2012, 101, 143905.

    Google Scholar 

  3. Howell, S. L.; Padalkar, S.; Yoon, K.; Li, Q. M.; Koleske, D. D.; Wierer, J. J.; Wang, G. T.; Lauhon, L. J. Spatial mapping of efficiency of GaN/InGaN nanowire array solar cells using scanning photocurrent microscopy. Nano Lett.2013, 13, 5123–5128.

    CAS  Google Scholar 

  4. Li, C. Y.; Wright, J. B.; Liu, S.; Lu, P.; Figiel, J. J.; Leung, B.; Chow, W. W.; Brener, I.; Koleske, D. D.; Luk, T. S. et al. Nonpolar InGaN/GaN core-shell single nanowire lasers. Nano Lett.2017, 17, 1049–1055.

    CAS  Google Scholar 

  5. Zhao, C.; Ng, T. K.; ElAfandy, R. T.; Prabaswara, A.; Consiglio, G B.; Ajia, I. A.; Roqan, I. S.; Janjua, B.; Shen, C.; Eid, J. et al. Droop-free, reliable, and high-power InGaN/GaN nanowire light-emitting diodes for monolithic metal-optoelectronics. Nano Lett.2016, 16, 4616–4623.

    CAS  Google Scholar 

  6. Dai, X.; Messanvi, A.; Zhang, H. Z.; Durand, C.; Eymery, J.; Bougerol, C.; Julien, F. H.; Tchernycheva, M. Flexible light-emitting diodes based on vertical nitride nanowires. Nano Lett.2015, 15, 6958–6964.

    Google Scholar 

  7. Riley, J. R.; Padalkar, S.; Li, Q. M.; Lu, P.; Koleske, D. D.; Wierer, J. J.; Wang, G. T.; Lauhon, L. J. Three-dimensional mapping of quantum wells in a GaN/InGaN core-shell nanowire light-emitting diode array. Nano Lett.2013, 13, 4317–4325.

    CAS  Google Scholar 

  8. Neugebauer, J.; Van de Walle, C. G. Gallium vacancies and the yellow luminescence in GaN. Appl. Phys. Lett.1996, 69, 503–505.

    Google Scholar 

  9. Ogino, T.; Aoki, T. Mechanism of yellow luminescence in GaN. Jpn. J. Appl. Phys.1980, 19, 2395–2405.

    CAS  Google Scholar 

  10. Ponce, F. A.; Bour, D. P.; Götz, W.; Wright, P. J. Spatial distribution of the luminescence in GaN thin films. Appl. Phys. Lett.1996, 68, 57–59.

    CAS  Google Scholar 

  11. Schubert, E. F. Radiative and non-radiative recombination. In Light-Emitting Diodes. Schubert, E. F., Ed.; Cambridge University Press: Cambridge, 2006; pp 35–44.

    Google Scholar 

  12. Pankove, J. I.; Hutchby, J. A. Photoluminescence of ion-implanted GaN. J. Appl. Phys.1976, 47, 5387–5390.

    CAS  Google Scholar 

  13. Liao, H.; Li, J. C.; Wei, T. T.; Wen, P. J.; Li, M.; Hu, X. D. First-principles study of CN point defects on sidewall surface of [0001]-oriented GaN nanowires. Appl. Surf. Sci.2019, 467–468, 293–297.

    Google Scholar 

  14. Kucheyev, S. O.; Toth, M.; Phillips, M. R.; Williams, J. S.; Jagadish, C.; Li, G. Chemical origin of the yellow luminescence in GaN. J. Appl. Phys.2002, 91, 5867–5874.

    CAS  Google Scholar 

  15. Li, X.; Bohn, P. W.; Coleman, J. J. Impurity states are the origin of yellow-band emission in GaN structures produced by epitaxial lateral overgrowth. Appl. Phys. Lett.1999, 75, 4049–4051.

    CAS  Google Scholar 

  16. Christenson, S. G.; Xie, W. Y.; Sun, Y. Y.; Zhang, S. B. Carbon as a source for yellow luminescence in GaN: Isolated CN defect or its complexes. J. Appl. Phys.2015, 118, 135708.

    Google Scholar 

  17. Reshchikov, M. A.; Demchenko, D. O.; Usikov, A.; Helava, H.; Makarov, Y. Carbon defects as sources of the green and yellow luminescence bands in undoped GaN. Phys. Rev. B2014, 90, 235203.

    Google Scholar 

  18. Lyons, J. L.; Janotti, A.; Van de Walle, C. G. Carbon impurities and the yellow luminescence in GaN. Appl. Phys. Lett.2010, 97, 152108.

    Google Scholar 

  19. Armitage, R.; Hong, W.; Yang, Q.; Feick, H.; Gebauer, J.; Weber, E. R.; Hautakangas, S.; Saarinen, K. Contributions from gallium vacancies and carbon-related defects to the “yellow luminescence” in GaN. Appl. Phys. Lett.2003, 82, 3457–3459.

    CAS  Google Scholar 

  20. Demchenko, D. O.; Diallo, I. C.; Reshchikov, M. A. Yellow luminescence of gallium nitride generated by carbon defect complexes. Phys. Rev. Lett.2013, 110, 087404.

    CAS  Google Scholar 

  21. Götz, W.; Johnson, N. M.; Chen, C.; Liu, H.; Kuo, C.; Imler, W. Activation energies of Si donors in GaN. Appl. Phys. Lett.1996, 68, 3144–3146.

    Google Scholar 

  22. Soh, C. B.; Chua, S. J.; Lim, H. F.; Chi, D. Z.; Tripathy, S.; Liu, W. Assignment of deep levels causing yellow luminescence in GaN. J. Appl. Phys.2004, 96, 1341–1347.

    CAS  Google Scholar 

  23. Kaufmann, U.; Kunzer, M.; Obloh, H.; Maier, M.; Manz, C.; Ramakrishnan, A.; Santic, B. Origin of defect-related photoluminescence bands in doped and nominally undoped GaN. Phys. Rev. B1999, 59, 5561–5567.

    CAS  Google Scholar 

  24. Mattila, T.; Nieminen, R. M. Point-defect complexes and broadband luminescence in GaN and AlN. Phys. Rev. B1997, 55, 9571–9576.

    CAS  Google Scholar 

  25. Toth, M.; Fleischer, K.; Phillips, M. R. Direct experimental evidence for the role of oxygen in the luminescent properties of GaN. Phys. Rev. B1999, 59, 1575–1578.

    CAS  Google Scholar 

  26. Slack, G. A.; Schowalter, L. J.; Morelli, D.; Freitas Jr, J. A. Some effects of oxygen impurities on AlN and GaN. J. Cryst. Growth2002, 246, 287–298.

    CAS  Google Scholar 

  27. Liu, B. D.; Yuan, F.; Dierre, B.; Sekiguchi, T.; Zhang, S.; Xu, Y. K.; Jiang, X. Origin of yellow-band emission in epitaxially grown GaN nanowire arrays. ACS Appl. Mater. Interfaces2014, 6, 14159–14166.

    CAS  Google Scholar 

  28. Coulon, P. M.; Alloing, B.; Brändli, V.; Vennéguès, P.; Leroux, M.; Zúñiga-Pérez, J. Dislocation filtering and polarity in the selective area growth of GaN nanowires by continuous-flow metal organic vapor phase epitaxy. Appl. Phys. Express2016, 9, 015502.

    Google Scholar 

  29. Colby, R.; Liang, Z. W.; Wildeson, I. H, Ewoldt, D. A.; Sands, T. D.; García, R. E.; Stach, E. A. Dislocation filtering in GaN nanostructures. Nano Lett.2010, 10, 1568–1573.

    CAS  Google Scholar 

  30. Zhao, C.; Ng, T. K.; Prabaswara, A.; Conroy, M.; Jahangir, S.; Frost, T.; O’Connell, J.; Holmes, J. D.; Parbrook, P. J.; Bhattacharya, P. et al. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination. Nanoscale2015, 7, 16658–16665.

    CAS  Google Scholar 

  31. Li, Q. M.; Wang, G. T. Spatial distribution of defect luminescence in GaN nanowires. Nano Lett.2010, 10, 1554–1558.

    CAS  Google Scholar 

  32. Huang, P.; Zong, H.; Shi, J. J.; Zhang, M.; Jiang, X. H.; Zhong, H. X.; Ding, Y. M.; He, Y. P.; Lu, J.; Hu, X. D. Origin of 3.45 eV emission line and yellow luminescence band in GaN nanowires: Surface microwire and defect. ACS Nano2015, 9, 9276–9283.

    CAS  Google Scholar 

  33. Zhao, B.; Lockrey, M. N.; Caroff, P.; Wang, N.; Li, L.; Wong-Leung, J.; Tan, H. H.; Jagadish, C. The effect of nitridation on the polarity and optical properties of GaN self-assembled nanorods. Nanoscale2018, 10, 11205–11210.

    CAS  Google Scholar 

  34. de la Mata, M.; Magen, C.; Gazquez, J.; Utama, M. I. B.; Heiss, M.; Lopatin, S.; Furtmayr, F.; Fernández-Rojas, C. J.; Peng, B.; Morante, J. R. et al. Polarity assignment in ZnTe, GaAs, ZnO, and GaN-AlN nanowires from direct dumbbell analysis. Nano Lett.2012, 12, 2579–2586.

    CAS  Google Scholar 

  35. Wang, N. W.; Chen, X. D.; Yang, Y. H.; Dong, J. W.; Wang, C. X.; Yang, G. W. Diffuse reflection inside a hexagonal nanocavity. Sci. Rep. 2013, 3, 1298.

    CAS  Google Scholar 

  36. Tamboli, A. C.; Schmidt, M. C.; Hirai, A.; DenBaars, S. P.; Hu, E. L. Observation of whispering gallery modes in nonpolar m-plane GaN microdisks. Appl. Phys. Lett.2009, 94, 251116.

    Google Scholar 

  37. Kouno, T.; Kishino, K.; Sakai, M. Lasing action on whispering gallery mode of self-organized GaN hexagonal microdisk crystal fabricated by RF-plasma-assisted molecular beam epitaxy. IEEE J. Quantum Elect.2011, 47, 1565–1570.

    CAS  Google Scholar 

  38. Tessarek, C.; Dieker, C.; Spiecker, E.; Christiansen, S. Growth of GaN nanorods and wires and spectral tuning of whispering gallery modes in tapered GaN wires. Jpn. J. Appl. Phys.2013, 52, 08JE09.

    Google Scholar 

  39. Tessarek, C.; Goldhahn, R.; Sarau, G.; Heilmann, M.; Christiansen, S. Carrier-induced refractive index change observed by a whispering gallery mode shift in GaN microrods. New J. Phys.2015, 17, 083047.

    Google Scholar 

  40. Baek, H.; Hyun, J. K.; Chung, K.; Oh, H.; Yi, G. C. Selective excitation of Fabry-Pérot or whispering-gallery mode-type lasing in GaN microrods. Appl. Phys. Lett.2014, 105, 201108.

    Google Scholar 

  41. Coulon, P. M.; Hugues, M.; Alloing, B.; Beraudo, E.; Leroux, M.; Zuniga-Perez, J. GaN microwires as optical microcavities: Whispering gallery modes vs. Fabry-Pérot modes. Opt. Express2012, 20, 18707–18716.

    CAS  Google Scholar 

  42. Coulon, P. M.; Mexis, M.; Teisseire, M.; Jublot, M.; Vennéguès, P.; Leroux, M.; Zuniga-Perez, J. Dual-polarity GaN micropillars grown by metalorganic vapour phase epitaxy: Cross-correlation between structural and optical properties. J. Appl. Phys.2014, 115, 153504.

    Google Scholar 

  43. Volotsenko, I.; Molotskii, M.; Barkay, Z.; Marczewski, J.; Grabiec, P.; Jaroszewicz, B.; Meshulam, G.; Grunbaum, E.; Rosenwaks, Y. Secondary electron doping contrast: Theory based on scanning electron microscope and Kelvin probe force microscopy measurements. J. Appl. Phys.2010, 107, 014510.

    Google Scholar 

  44. Seiler, H. Secondary electron emission in the scanning electron microscope. J. Appl. Phys.1983, 54, R1–R18.

    CAS  Google Scholar 

  45. Sealy, C. P.; Castell, M. R.; Wilshaw, P. R. Mechanism for secondary electron dopant contrast in the SEM. J. Electron Microsc.2000, 49, 311–321.

    CAS  Google Scholar 

  46. Ko, S. M.; Kim, J. H.; Ko, Y. H.; Chang, Y. H.; Kim, Y. H.; Yoon, J.; Lee, J. Y.; Cho, Y. H. Growth mechanism of catalyst-free and mask-free heteroepitaxial GaN submicrometer- and micrometer-sized rods under biaxial strain: Variation of surface energy and adatom kinetics. Cryst. Growth Des.2012, 12, 3838–3844.

    CAS  Google Scholar 

  47. Bae, S. Y.; Lee, J. Y.; Min, J. H.; Lee, D. S. Morphology evolution of pulsed-flux Ga-polar GaN nanorod growth by metal organic vapor phase epitaxy and its nucleation dependence. Appl. Phys. Express2013, 6, 075501.

    Google Scholar 

  48. Yuan, X. M.; Yang, J. B.; He, J.; Tan, H. H.; Jagadish, C. Role of surface energy in nanowire growth. J. Phys. D: Appl. Phys.2018, 51, 283002.

    Google Scholar 

  49. Thillosen, N.; Sebald, K.; Hardtdegen, H.; Meijers, R.; Calarco, R.; Montanari, S.; Kaluza, N.; Gutowski, J.; Lüth, H. The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements. Nano Lett.2006, 6, 704–708.

    CAS  Google Scholar 

  50. Hytch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy1998, 74, 131–146.

    CAS  Google Scholar 

  51. Lyons, J. L.; Janotti, A.; Van de Walle, C. G. Effects of carbon on the electrical and optical properties of InN, GaN, and AlN. Phys. Rev. B2014, 89, 035204.

    Google Scholar 

  52. Wright, A. F. Substitutional and interstitial carbon in wurtzite GaN. J. Appl. Phys.2002, 92, 2575–2585.

    CAS  Google Scholar 

  53. Paskov, P. P.; Monemar, B. 2-point defects in group-III nitrides. In Defects in Advanced Electronic Materials and Novel Low Dimensional Structures. Stehr, J.; Buyanova, I.; Chen, W., Eds.; Woodhead Publishing: Duxford, 2018; pp 27–61.

    Google Scholar 

  54. Takakuwa-Hongo, C.; Tomita, M. High-sensitivity SIMS analysis of carbon in gan films by molecular ion detection. Surf. Interface Anal.1997, 25, 966–969.

    CAS  Google Scholar 

  55. Qian, F.; Brewster, M.; Lim, S. K.; Ling, Y. C.; Greene, C.; Laboutin, O.; Johnson, J. W.; Gradečak, S.; Cao, Y.; Li, Y. Controlled synthesis of AlN/GaN multiple quantum well nanowire structures and their optical properties. Nano Lett.2012, 12, 3344–3350.

    CAS  Google Scholar 

  56. Lim, S. K.; Brewster, M.; Qian, F.; Li, Y.; Lieber, C. M.; Gradečak, S. Direct correlation between structural and optical properties of III–V nitride nanowire heterostructures with nanoscale resolution. Nano Lett.2009, 9, 3940–3944.

    CAS  Google Scholar 

  57. Zheng, C. L.; Wong-Leung, J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Etheridge, J. Polarity-driven 3-fold symmetry of GaAs/AlGaAs core multishell nanowires. Nano Lett.2013, 13, 3742–3748.

    CAS  Google Scholar 

Download references

Acknowledgements

The Australian Research Council is acknowledged for its financial support. Access to the facilities is made possible through the Australian National Fabrication Facility, Australian Capital Territory Node. The authors also acknowledge the assistance of Dr Gilberto Casillas Garcia at the Electron Microscopy Centre at the University of Wollongong and Paul Guagliardo at Centre for Microscopy, Characterisation and Analysis at the University of Western Australia. B. J. Z. would like to thank for Dr Xiangyuan Cui at the University of Sydney for helpful discussion on the GaN related defects. B. J. Z. would like to thank the China Scholarship Council and the Australia National University for her scholarship support. X. Y. thanks the National Natural Science Foundation of China (Nos. 61974166 and 51702368) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bijun Zhao or Chennupati Jagadish.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Lockrey, M.N., Wang, N. et al. Highly regular rosette-shaped cathodoluminescence in GaN self-assembled nanodisks and nanorods. Nano Res. 13, 2500–2505 (2020). https://doi.org/10.1007/s12274-020-2886-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2886-6

Keywords

Navigation