Skip to main content

Advertisement

Log in

Adipose-Derived Mesenchymal Stem Cells and Conditioned Medium Attenuate the Memory Retrieval Impairment During Sepsis in Rats

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In this study, we hypothesized that sepsis induction impairs memory retrieval in rats while transplanted mesenchymal stem cells (MSCs) and MSC-conditioned medium (MSC-CM) application are capable of attenuating those complications. MSCs were obtained from adipose tissue of rats and at the second culture passage; MSCs and MSC–CM were collected. Rats were randomly divided into four experimental groups: sham, CLP, MSC, and MSC-CM. Sepsis was induced by cecal ligation and puncture (CLP) model in the CLP, MSC, and MSC-CM groups. The MSC group received 1 × 106 MSCs/rat (i.p., 2 h after CLP surgery); the MSC-CM rats received the conditioned medium (CM) from 1 × 106 MSCs intraperitoneally 2 h after sepsis induction. Novel object recognition test, sepsis score, and blood pressure measurement were performed 24 h after the treatments. The right hippocampus was taken for western blot analysis. CLP rats showed a significantly higher sepsis score and systolic blood pressure. They also had a significant increase in the phosphorylated form of CAMKII-α, cleaved caspase 3 and Bax/Bcl2 ratio, and a reduction in c-fos protein in the hippocampus tissue samples compared with the sham group. MSC transplantation and MSC-CM administration significantly decreased the mean sepsis score and prevented sepsis-induced attenuation of blood pressure compared with the CLP rats. Animals in the MSC and MSC-CM groups showed a better memory retrieval, attenuation in phosphorylated form of CAMKII-α, cleaved caspase 3 and Bax/Bcl2 ratio, and an increase in c-fos protein expression compared with the CLP group. It seems that CAMKII and c-fos are inversely involved in regulating memory processes in hippocampus. Phosphorylated form of CaMKII-α overexpression may impair the ability of object recognition. Our findings confirmed that MSC-CM application has more advantages compared with transplanted MSCs and may be offered as a promising therapy for inflammatory diseases such as severe sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Huet O, Chin-Dusting JP (2014) Septic shock: desperately seeking treatment. Clin Sci (Lond) 126(1):31–39. https://doi.org/10.1042/cs20120668

    Article  CAS  Google Scholar 

  2. Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD et al (2016) Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315(8):775–787. https://doi.org/10.1001/jama.2016.0289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315(8):801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Laroye C, Gibot S, Reppel L, Bensoussan D (2017) Concise review: mesenchymal stromal/stem cells: a new treatment for sepsis and septic shock? Stem Cells 35(12):2331–2339. https://doi.org/10.1002/stem.2695

    Article  PubMed  Google Scholar 

  5. Iacobone E, Bailly-Salin J, Polito A, Friedman D, Stevens RD, Sharshar T (2009) Sepsis-associated encephalopathy and its differential diagnosis. Crit Care Med 37(10 Suppl):S331–S336. https://doi.org/10.1097/CCM.0b013e3181b6ed58

    Article  PubMed  Google Scholar 

  6. Iwashyna TJ, Ely EW, Smith DM, Langa KM (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304(16):1787–1794. https://doi.org/10.1001/jama.2010.1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chaudhry N, Duggal AK (2014) Sepsis associated encephalopathy. Adv Med 2014:762320–762316. https://doi.org/10.1155/2014/762320

    Article  PubMed  PubMed Central  Google Scholar 

  8. Annane D, Sharshar T (2015) Cognitive decline after sepsis. Lancet Respir Med 3(1):61–69. https://doi.org/10.1016/S2213-2600(14)70246-2

    Article  CAS  PubMed  Google Scholar 

  9. Keane C, Jerkic M, Laffey JG (2017) Stem cell-based therapies for sepsis. Anesthesiology 127(6):1017–1034. https://doi.org/10.1097/ALN.0000000000001882

    Article  PubMed  Google Scholar 

  10. Silva AYO, Amorim EA, Barbosa-Silva MC, Lima MN, Oliveira HA, Granja MG, Oliveira KS, Fagundes PM et al (2020) Mesenchymal stromal cells protect the blood-brain barrier, reduce astrogliosis, and prevent cognitive and behavioral alterations in surviving septic mice. Crit Care Med 48(4):e290–e298. https://doi.org/10.1097/CCM.0000000000004219

    Article  CAS  PubMed  Google Scholar 

  11. Arana M, Mazo M, Aranda P, Pelacho B, Prosper F (2013) Adipose tissue-derived mesenchymal stem cells: isolation, expansion, and characterization. Methods Mol Biol 1036:47–61. https://doi.org/10.1007/978-1-62703-511-8_4

    Article  CAS  PubMed  Google Scholar 

  12. Abdolmohammadi K, Pakdel FD, Aghaei H, Assadiasl S, Fatahi Y, Rouzbahani NH, Rezaiemanesh A, Soleimani M et al (2019) Ankylosing spondylitis and mesenchymal stromal/stem cell therapy: a new therapeutic approach. Biomed Pharmacother 109:1196–1205. https://doi.org/10.1016/j.biopha.2018.10.137

    Article  CAS  PubMed  Google Scholar 

  13. Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15(3):4142–4157. https://doi.org/10.3390/ijms15034142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baghaei K, Tokhanbigli S, Asadzadeh H, Nmaki S, Reza Zali M, Hashemi SM (2019) Exosomes as a novel cell-free therapeutic approach in gastrointestinal diseases. J Cell Physiol 234(7):9910–9926. https://doi.org/10.1002/jcp.27934

    Article  CAS  PubMed  Google Scholar 

  15. Yousefi F, Ebtekar M, Soudi S, Soleimani M, Hashemi SM (2016) In vivo mmunomodulatory effects of adipose-derived mesenchymal stem cells conditioned medium in experimental autoimmune encephalomyelitis. Immunol Lett 172:94–105. https://doi.org/10.1016/j.imlet.2016.02.016

    Article  CAS  PubMed  Google Scholar 

  16. Winters BD, Forwood SE, Cowell RA, Saksida LM, Bussey TJ (2004) Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J Neurosci 24(26):5901–5908. https://doi.org/10.1523/jneurosci.1346-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cohen SJ, Munchow AH, Rios LM, Zhang G, Asgeirsdottir HN, Stackman RW Jr (2013) The rodent hippocampus is essential for nonspatial object memory. Curr Biol 17:1685–1690. https://doi.org/10.1016/j.cub.2013.07.002

    Article  CAS  Google Scholar 

  18. Hegde AN (2017) Proteolysis, synaptic plasticity and memory. Neurobiol Learn Mem 138:98–110. https://doi.org/10.1016/j.nlm.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  19. Nanou E, Catterall WA (2018) Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 98(3):466–481. https://doi.org/10.1016/j.neuron.2018.03.017

    Article  CAS  PubMed  Google Scholar 

  20. Lucchesi W, Mizuno K, Giese KP (2011) Novel insights into CaMKII function and regulation during memory formation. Brain Res Bull 85(1–2):2–8. https://doi.org/10.1016/j.brainresbull.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  21. Coultrap SJ, Bayer KU (2012) CaMKII regulation in information processing and storage. Trends Neurosci 35(10):607–618. https://doi.org/10.1016/j.tins.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hell JW (2014) CaMKII: claiming center stage in postsynaptic function and organization. Neuron 81(2):249–265. https://doi.org/10.1016/j.neuron.2013.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zalcman G, Federman N, Romano A (2018) CaMKII isoforms in learning and memory: localization and function. Front Mol Neurosci 11:445. https://doi.org/10.3389/fnmol.2018.00445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaczmarek L (1993) Molecular biology of vertebrate learning: is c-fos a new beginning? J Neurosci Res 34(4):377–381. https://doi.org/10.1002/jnr.490340402

    Article  CAS  PubMed  Google Scholar 

  25. Arias N, Mendez M, Arias JL (2015) The recognition of a novel-object in a novel context leads to hippocampal and parahippocampal c-Fos involvement. Behav Brain Res 292:44–49. https://doi.org/10.1016/j.bbr.2015.06.012

    Article  CAS  PubMed  Google Scholar 

  26. Callaghan CK, Kelly AM (2012) Differential BDNF signaling in dentate gyrus and perirhinal cortex during consolidation of recognition memory in the rat. Hippocampus 22(11):2127–2135. https://doi.org/10.1002/hipo.22033

    Article  CAS  PubMed  Google Scholar 

  27. Abdolmohammadi K, Mahmoudi T, Nojehdehi S, Tayebi L, Hashemi S, Noorbakhsh F, Abdollahi A, Soleimani M et al (in press) Effect of hypoxia preconditioned adipose-derived Mesenchymal stem cell conditioned medium on cerulein-induced acute pancreatitis in mice. Adv Pharm Bull. https://doi.org/10.15171/apb.2020.036

  28. Pouya S, Heidari M, Baghaei K, Asadzadeh Aghdaei H, Moradi A, Namaki S, Zali MR, Hashemi SM (2018) Study the effects of mesenchymal stem cell conditioned medium injection in mouse model of acute colitis. Int Immunopharmacol 54:86–94. https://doi.org/10.1016/j.intimp.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  29. Hashemi SM, Hassan ZM, Hossein-Khannazer N, Pourfathollah AA, Soudi S (2020) Investigating the route of administration and efficacy of adipose tissue-derived mesenchymal stem cells and conditioned medium in type 1 diabetic mice. Inflammopharmacology 28(2):585–601. https://doi.org/10.1007/s10787-019-00661-x

    Article  CAS  PubMed  Google Scholar 

  30. Rahbarghazi R, Nassiri SM, Ahmadi SH, Mohammadi E, Rabbani S, Araghi A, Hosseinkhani H (2014) Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction. Int J Cardiol 173(3):453–466. https://doi.org/10.1016/j.ijcard.2014.03.008

    Article  PubMed  Google Scholar 

  31. Hubbard WJ, Choudhry M, Schwacha MG, Kerby JD, Rue LW 3rd, Bland KI, Chaudry IH (2005) Cecal ligation and puncture. Shock 24(Suppl 1):52–57

    Article  Google Scholar 

  32. Shrum B, Anantha RV, Xu SX, Donnelly M, Haeryfar SM, McCormick JK, Mele T (2014) A robust scoring system to evaluate sepsis severity in an animal model. BMC Res Notes 7:233. https://doi.org/10.1186/1756-0500-7-233

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mathiasen JR, DiCamillo A (2010) Novel object recognition in the rat: a facile assay for cognitive function. Curr Protocols Pharmacol Chapter 5:Unit 5.59. https://doi.org/10.1002/0471141755.ph0559s49

    Article  Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  35. Wang P, Cao Y, Yu J, Liu R, Bai B, Qi H, Zhang Q, Guo W et al (2016) Baicalin alleviates ischemia-induced memory impairment by inhibiting the phosphorylation of CaMKII in hippocampus. Brain Res 1642:95–103. https://doi.org/10.1016/j.brainres.2016.03.019

    Article  CAS  PubMed  Google Scholar 

  36. Barker GR, Warburton EC (2011) When is the hippocampus involved in recognition memory? J Neurosci 31(29):10721–10731. https://doi.org/10.1523/jneurosci.6413-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gaskin S, Tremblay A, Mumby DG (2003) Retrograde and anterograde object recognition in rats with hippocampal lesions. Hippocampus 13(8):962–969. https://doi.org/10.1002/hipo.10154

    Article  PubMed  Google Scholar 

  38. Hanson PI, Meyer T, Stryer L, Schulman H (1994) Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron 12(5):943–956. https://doi.org/10.1016/0896-6273(94)90306-9

    Article  CAS  PubMed  Google Scholar 

  39. Rostas JA, Hoffman A, Murtha LA, Pepperall D, McLeod DD, Dickson PW, Spratt NJ, Skelding KA (2017) Ischaemia- and excitotoxicity-induced CaMKII-mediated neuronal cell death: The relative roles of CaMKII autophosphorylation at T286 and T253. Neurochem Int 104:6–10. https://doi.org/10.1016/j.neuint.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  40. Hudmon A, Schulman H (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473–510. https://doi.org/10.1146/annurev.biochem.71.110601.135410

    Article  CAS  PubMed  Google Scholar 

  41. Tinsley CJ, Narduzzo KE, Ho JW, Barker GR, Brown MW, Warburton EC (2009) A role for calcium-calmodulin-dependent protein kinase II in the consolidation of visual object recognition memory. Eur J Neurosci 30(6):1128–1139. https://doi.org/10.1111/j.1460-9568.2009.06917.x

    Article  CAS  PubMed  Google Scholar 

  42. Cao X, Wang H, Mei B, An S, Yin L, Wang LP, Tsien JZ (2008) Inducible and selective erasure of memories in the mouse brain via chemical-genetic manipulation. Neuron 60(2):353–366. https://doi.org/10.1016/j.neuron.2008.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vigil FA, Giese KP (2018) Calcium/calmodulin-dependent kinase II and memory destabilization: A new role in memory maintenance. J Neurochem 147(1):12–23. https://doi.org/10.1111/jnc.14454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jarome TJ, Ferrara NC, Kwapis JL, Helmstetter FJ (2016) CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval. Neurobiol Learn Mem 128:103–109. https://doi.org/10.1016/j.nlm.2016.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Qin ZH (2010) Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis 15(11):1382–1402. https://doi.org/10.1007/s10495-010-0481-0

    Article  CAS  PubMed  Google Scholar 

  46. Takano H, Sugimura M, Kanazawa Y, Uchida T, Morishima Y, Shirasaki Y (2004) Protective effect of DY-9760e, a calmodulin antagonist, against neuronal cell death. Biol Pharm Bull 27(11):1788–1791. https://doi.org/10.1248/bpb.27.1788

    Article  CAS  PubMed  Google Scholar 

  47. Cheng Z, Wang L, Qu M, Liang H, Li W, Li Y, Deng L, Zhang Z et al (2018) Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice. J Neuroinflammation 15(1):135. https://doi.org/10.1186/s12974-018-1153-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang G, Liu Y, Zhang Z, Lu Y, Wang Y, Huang J, Li Y, Chen X et al (2014) Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia. Stem Cells 32(12):3150–3162. https://doi.org/10.1002/stem.1808

    Article  CAS  PubMed  Google Scholar 

  49. Park HJ, Shin JY, Kim HN, Oh SH, Song SK, Lee PH (2015) Mesenchymal stem cells stabilize the blood-brain barrier through regulation of astrocytes. Stem Cell Res Ther 6:187. https://doi.org/10.1186/s13287-015-0180-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Laroye C, Lemarie J, Boufenzer A, Labroca P, Cunat L, Alauzet C, Groubatch F, Cailac C et al (2018) Clinical-grade mesenchymal stem cells derived from umbilical cord improve septic shock in pigs. Intensive Care Med Exp 6(1):24. https://doi.org/10.1186/s40635-018-0194-1

    Article  PubMed  PubMed Central  Google Scholar 

  51. White IA, Sanina C, Balkan W, Hare JM (2016) Mesenchymal stem cells in cardiology. Methods Mol Biol 1416:55–87. https://doi.org/10.1007/978-1-4939-3584-0_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maria Ferri AL, Bersano A, Lisini D, Boncoraglio G, Frigerio S, Parati E (2016) Mesenchymal stem cells for ischemic stroke: progress and possibilities. Curr Med Chem 23(16):1598–1608. https://doi.org/10.2174/0929867323666160222113702

    Article  CAS  PubMed  Google Scholar 

  53. Reis LA, Borges FT, Simoes MJ, Borges AA, Sinigaglia-Coimbra R, Schor N (2012) Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS One 7(9):e44092. https://doi.org/10.1371/journal.pone.0044092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by a grant (no = 41504) from Tehran University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Fariba Akhondzadeh, Farzaneh Kianian, Ghorbongol Ashabi, and Kamal Abdolmohammadi. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mina Ranjbaran.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhondzadeh, F., Kadkhodaee, M., Seifi, B. et al. Adipose-Derived Mesenchymal Stem Cells and Conditioned Medium Attenuate the Memory Retrieval Impairment During Sepsis in Rats. Mol Neurobiol 57, 3633–3645 (2020). https://doi.org/10.1007/s12035-020-01991-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01991-6

Keywords

Navigation