Skip to main content
Log in

The Kallianos Au-Ag-Te mineralization, Evia Island, Greece: a detachment-related distal hydrothermal deposit of the Attico-Cycladic Metallogenetic Massif

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Kallianos Au-Ag-Te deposit in Evia Island (Greece) comprises sixteen syntaxial veins that intersect the schists and marbles of the Cycladic Blueschist Unit. The veins are filled with quartz-I and quartz-II, contain two hypogene ore stages (stages I and II), and are surrounded by infrequent muscovite-chlorite alteration zones. A magmatic origin is deduced for the Kallianos Au-Ag-Te mineralization, based on stable (S, C, Si, O, and H) and radiogenic (Pb, Sr, and Rb) isotopes, and fluid chemistry. The veins were deposited under pressures of ~ 220 to ~ 145 bars and temperatures of ~ 260 to 120 °C, from almost neutral H2Te-bearing hydrothermal fluids with a salinity of 2.2 to 15.8 wt.% NaCl equivalent. The telluride mineralization related to stage II was deposited at ~ 180 °C and evolved from Au- through Bi- to Ag-bearing tellurides. The vein minerals precipitated by simple cooling of almost non-reactive fluids that retained their initial magmatic signature. Taking into account the magmatic origin of the Kallianos deposit, we examine two proximal areas with granodioritic and leucogranitic intrusions similar to those associated with base and precious metal mineralization at Lavrion (~ 8.3 to ~ 7.1 Ma) and Tinos Island (~ 15 to ~ 13 Ma), as potential sources for the Kallianos fluids. Rb-Sr geochronology dating of the distal Kallianos Au-Ag-Te veins gave an age range of 8.1 to 7.6 Ma, implying that an overlapping and channelized hydrothermal system was active at the northern part of the Attico-Cycladic Metallogenetic Massif, utilizing the CBU detachment zones as fluid pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agiorgitis G, Becker R (1975) Spurenelemente in pyrit, kupferkies und bleiglanz von Kalliani, Euböa-Distrikt, Griechenland. Chem Erde 34:239–243

    Google Scholar 

  • Allan MM, Yardley BWD, Forbes LJ, Shmulovich KI, Banks DA, Shepherd TJ (2005) Validation of LA-ICP-MS fluid inclusion analysis with synthetic fluid inclusions. Amer Miner90:1767–1775

  • Altherr R, Siebel W (2002) I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contr Min Petr 143:397–415

    Google Scholar 

  • Barton PB Jr, Skinner BJ (1979) Sulfide mineral stabilities. In: Barnes HL (ed) Geochemistry of the hydrothermal ore deposits, 3rd edn. Wiley J, and Sons, New York, pp 236–333

    Google Scholar 

  • Berger A, Schneider DA, Grasemann B, Stockli D (2013) Footwall mineralization during Late Miocene extension along the West Cycladic Detachment System, Lavrion, Greece. Terra Nova 25:181–191

    Google Scholar 

  • Bignall G, Sekine K, Tsuchiya N (2004) Fluid-rock interaction processes in the Te Kopia geothermal field (New Zealand) revealed by SEM-CL imaging. Geoth 33:615–635. https://doi.org/10.1016/j.geothermics.2004.03.001

    Article  Google Scholar 

  • Bindi L, Voudouris P, Spry PG (2013) Structural role of tellurium in the minerals of the pearceite-polybasite group. Miner Mag 77:419–428

    Google Scholar 

  • Bodnar RJ (2003) Introduction to fluid inclusions. In: Samson I, Anderson A, Marshall, D (eds), Fluid inclusions: analysis and interpretation. Miner Ass Can Short Course 32:1–8

    Google Scholar 

  • Bolhar R, Ring U, Allen CM (2010) An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: Part 1: Geochronology. Contr Min Petr 160:719–742

  • Bonsall TA, Spry PG, Voudouris P, Seymour K, Tombros S, Melfos V (2011) The geochemistry of carbonate-replacement Pb-Zn-Ag mineralization in the Lavrion District, Attica, Greece: fluid inclusion, stable isotope, and rare earth element studies. Econ Geol 106:619–651

    Google Scholar 

  • Bowman JR (1998) Stable-isotope systematics of skarns. In: Lentz DR (ed), Mineralized intrusion-related skarn systems. Min Ass Can Short Course Ser 26:99–145

  • Brichau S, Ring U, Carter A, Monié P, Bolhar R, Stockli D, Brunel M (2007) Extensional faulting on Tinos Island, Aegean Sea, Greece: how many detachments? Tectonics 26:TC4009. https://doi.org/10.1029/2006TC001969

    Article  Google Scholar 

  • Brichau S, Ring U, Carter A, Bolhar R, Monié P, Stockli D, Brunel M (2008) Timing, slip rate, displacement and cooling history of the Mykonos detachment footwall, Cyclades, Greece, and implications for the opening of the Aegean Sea basin. J Geol Soc Lond 165:263–277

    Google Scholar 

  • Brown PE (1989) FLINCOR: a microcomputer program for the reduction and investigation of fluid inclusion data. Am Miner 74:1390–1393

    Google Scholar 

  • Černý P, Blevin L, Cuney M, London D (2005) Granite-related ore deposits. Econ Geol 100th Anniv Vol Soc Econ Geol Inc:337–370

  • Chalkias S, Vavelidis M (1998) Interpretation of lead-isotope data from Greek Pb-Zn deposits, based on an empirical two-stage model. Bull Geol Soc Greece 23:177–193

    Google Scholar 

  • Chi G, Xue C (2011) An overview of hydrodynamic studies of mineralization. Geosc Fron 2:423–438

    Google Scholar 

  • Cooke DR, McPhail D (2001) Epithermal Au-Ag-Te mineralization, Acupan, Baguio district, Philippines: numeral simulations of mineral deposition. Econ Geol 96:109–132

    Google Scholar 

  • Denèle Y, Lecomte E, Jolivet L, Lacombe O, Labrousse L, Huet B, Le Pourhiet L (2011) Granite intrusion in a metamorphic core complex, the example of the Mykonos laccolith (Cyclades, Greece). Tectonoph 501:52–70

    Google Scholar 

  • Eiler JM, Guo W, Hofmann AE, Cartigny P, Bourg I, Gagnon A, Halevy I, Schauble E, Levin N, Bergquest B, Farquhar J, Stolper D (2014) Frontiers of stable isotope geoscience. Chem Geol 372:119–143. https://doi.org/10.1016/j.chemgeo.2014.02.006

    Article  Google Scholar 

  • Fitros M, Tombros FS, Williams-Jones A, Tsikouras V, Koutsopoulou E, Hatzipanagiotou K (2017) Physicochemical controls on bismuth mineralization, Moutoulas, Serifos Cyclades, Greece. Am Miner Sp Coll: From Magmas to Ore Deposits 102:1622–1631

    Google Scholar 

  • Fournier RO, Truesdell AH (1973) An empirical Na-K-Ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275

    Google Scholar 

  • Franzke HJ, Zerjadtke W (1993) Structural control of hydrothermal vein mineralizations in the lower Harz Mountains. In: Möller P, Lüders V (eds), Formation of hydrothermal vein deposits. Monog Ser Min Dep 30:13–33

  • Giggenbach WF (1991) Chemical techniques in geothermal exploration. In: D’Amore F (ed) Application of geochemistry in geothermal reservoir development, UNITAR/UNDP, pp 119–144

  • Grasemann B, Schneider DA, Stockli DF, Iglseder C (2012) Miocene bivergent crustal extension in the Aegean: evidence from the western Cyclades (Greece). Lithosphere 4:23–39. https://doi.org/10.1130/L164.1

    Article  Google Scholar 

  • Grundler P, Brugger J, Etschmann B, Helm L, Liu W, Spry PG, Tian Y, Testemale D, Pring A (2013) Speciation of aqueous tellurium (IV) in hydrothermal solutions and vapors and the role of oxidized tellurium species in gold metallogenesis. Geochim Cosmochim Acta 120:298–325

    Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

    Google Scholar 

  • Jolivet L, Menant A, Sternai P, Rabillard A, Arbaret L, Augier R, Laurent V, Beaudoin A, Grasemann B, Huet B, Labrousse L, Le Pourhiet L (2015) The geological signature of a slab tear below the Aegean. Tectonoph 659:166–182. https://doi.org/10.1016/j.tecto.2015.08.004Get

    Article  Google Scholar 

  • Kendrick M, Burgess R, Pattrick RAD, Turner G (2001) Halogen and Ar-Ar age determinations of fluid inclusions in quartz veins from porphyry copper deposits using complementary noble gas extraction techniques. Chem Geol 177:351–370

    Google Scholar 

  • Kleine BI, Stefánsson A, Halldórsson SA, Whitehouse MJ, Jónasson K (2018) Silicon and oxygen isotopes unravel quartz formation processes in the Icelandic crust. Geochem Persp Let 7:5–11. https://doi.org/10.7185/geochemlet.1811

    Article  Google Scholar 

  • Kokkalas S, Aydin A (2013) Is there a link between faulting and magmatism in the south Central Aegean Sea? Geol Mag 150:193–224

    Google Scholar 

  • Kokkalas S, Xypolias P, Koukouvelas I, Doutsos T (2006) Postcollisional constructional and extensional deformation in the Aegean region. In: Dilek Y, Pavlides S (eds) Post-collisional tectonics and magmatism in the Mediterranean region and Asia. Geol Soc Am Sp P 409:97–123. https://doi.org/10.1130/2006.2409

    Article  Google Scholar 

  • Le Boutillier N (2003) The tectonics of Variscan magmatism and mineralization in South West England I and II: PhD thesis, South Crofty Mine Geology Department, doi:https://doi.org/10.13140/RG.2.2.33139.73764

  • Li Y, Liu J (2006) Calculation of sulfur isotope fractionation in sulfides. Geochim Cosmochim Acta 70:1789–1795

    Google Scholar 

  • Liati A, Skarpelis N, Pe-Piper G (2009) Late Miocene magmatic activity in the Attic-Cycladic Belt of the Aegean (Lavrion, SE Attica, Greece): implications for the geodynamic evolution and timing of ore deposition. Geol Mag 146:732–742

    Google Scholar 

  • Ludwig, KR (2001) Isoplot/Ex, rev. 2.49. A geochronological toolkit for microsoft excel. Berkeley Geochronology Center, Special Publication 1, pp 1–55

  • Menant A, Jolivet L, Tuduri J, Loiselet C, Bertrand G, Guillou-Frottier L (2018) 3D subduction dynamics: a first-order parameter of the transition from copper- to gold-rich deposits in the eastern Mediterranean region. Ore Geol Rev 94:118–135. https://doi.org/10.1016/j.oregeorev.2018.01.023

    Article  Google Scholar 

  • Papanikolaou D (2009) Timing of tectonic emplacement of the ophiolites and terrane paleogeography in the Hellenides. Lithos 108:262–280. https://doi.org/10.1016/j.lithos.2008.08.003

    Article  Google Scholar 

  • Perlikos P (1989) Some new aspects on the geology and metallogeny of Southern Euboea. Bull Geol Soc Greece 23:327–344

    Google Scholar 

  • Petrascheck WE, Marinos G (1955) Geological reconnaissance in the area of the metalliferous veins NE of Karysteia, S Euboea. Internal report IGME, Athens 17:1–8

    Google Scholar 

  • Rickers K, Thomas R, Heinrich W (2006) The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: a SXRF study of melt and fluid inclusions. Miner Dep 41:229–245

    Google Scholar 

  • Ring U, Glodny J, Will T, Thomson SN (2007) An Oligocene extrusion wedge of blueschist-facies nappes on Evia, Aegean Sea, Greece: implications for the early exhumation of high-pressure rocks. J Geol Soc 164:637–652

    Google Scholar 

  • Ronacher E, Richards JP, Reed MH, Bray CJ, Spooner ETC, Adams PD (2004) Characteristics and evolution of the hydrothermal fluid in the north zone high grade area, Porgera gold deposit, Papua New Guinea. Econ Geol 99:843–867

    Google Scholar 

  • Salvi S, Williams-Jones A, (2003) Bulk analysis of volatiles in fluid inclusions. In: Samson I, Anderson A, Marshall D (eds), Fluid inclusions: analysis and interpretation, 1st edition, chapter 10, Miner ass can pp 10-1, 10–30

  • Savage PS, Georg RB, Williams HM, Turner S, Halliday AN, Chappell BW (2012) The silicon isotope composition of granites. Geochim Cosmochim Acta 92:184–202

    Google Scholar 

  • Scheffer C, Tarantola A, Vanderhaeghe O, Voudouris P, Rigaudier T, Photiadis A, Morin D, Alloucherie A (2017) The Lavrion Pb-Zn-Fe-Cu-Ag detachment-related district (Attica, Greece): structural control on hydrothermal flow and element transfer-deposition. Tectonophysics 717:607–627

    Google Scholar 

  • Scheffer C, Tarantola A, Vanderhaeghe O, Voudouris P, Spry GP, Rigaudier T, Photiadis A (2019) The Lavrion Pb-Zn-Ag–rich vein and breccia detachment-related deposits (Greece): Involvement of evaporated seawater and meteoric fluids during postorogenic exhumation. Econ Geol 114:1415–1442. https://doi.org/10.5382/econgeo.4670

    Article  Google Scholar 

  • Scherbarth NL, Spry G (2006) Mineralogical, petrological, stable isotope, and fluid inclusion characteristics of the Tuvatu gold-silver telluride deposit, Fiji: comparisons with the Emperor deposit. Econ Geol 101:135–158

    Google Scholar 

  • Shaked Y, Avigad D, Garfunkel Z (2000) Alpine high-pressure metamorphism at the Almyropotamos window (southern Evia, Greece). Geol Mag 137:367–380

    Google Scholar 

  • Shock ET, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state prediction to 5 kb and 1000°C. Geochim Cosmochim Acta 52:2009–2036

    Google Scholar 

  • Seymour K, Mastrakas N, Tombros SF, Williams-Jones AE, Spry G, Denes G, Kranidiotis P (2009) Scheelite mineralization of the skarn deposit, at Tinos Island, Aegean Sea, Cyclades. N Jah Min Abh 186:37–50

  • Stos-Gale AZ (1992) Application of lead isotope analysis to provenance studies in archaeology. Unpublished PhD thesis, Univ of Oxford, pp 303

  • Theophilopoulos D, Vakondios I (1982) Geological and metallogenetic studies at Kallianou area, SE Evia. Miner Wealth 19:27–50 (in Greek)

    Google Scholar 

  • Tombros FS, Seymour K, Williams-Jones AE, Spry PG (2007) The genesis of epithermal Au-Ag-Te mineralization, Panormos Bay, Tinos Island, Cyclades, Hellas (Greece). Econ Geol 102:1269–1294

    Google Scholar 

  • Tombros SF, Seymour K, Spry PG, Williams-Jones AE (2008) Later stages of evolution of an epithermal system: Au-Ag mineralizations at Apigania Bay, Tinos Island, Cyclades, Hellas (Greece). Min Petr 94:175–194

    Google Scholar 

  • Tombros FS, Seymour K, Williams-Jones AE (2010) Explanation and conditions of formation of the high tellurium contents in the early and late base metals stages of the epithermal polymetallic Ag-Au-Te mineralization, Tinos Island, Hellas. Econ Geol 105:1097–1111

    Google Scholar 

  • Tombros SF, St Seymour K, Williams-Jones A, Zhai D, Liu J (2015) Origin of barite-sulfide ore deposit in Mykonos intrusion, cyclades: trace element, isotopic, fluid inclusion, and Raman spectroscopy evidence. Ore Geol Rev 67:139–157. https://doi.org/10.1016/j.oregeorev.2014.11.016

    Article  Google Scholar 

  • Vavelidis M, Michailidis M (1990) Composition in the Fe-Pb-Cu-(Ag-Zn) hydrothermal quartz veins of Kallianou area, Southern Euboea. Bull Geol Soc Greece 22:87–96

    Google Scholar 

  • Voudouris P, Melfos V, Spry PG, Bonsall T, Tarkian M, Economou-Eliopoulos M (2008) Mineralogy and fluid inclusion constraints on the evolution of the Plaka intrusion-related ore system, Lavrion, Greece. Min Petr 93:79–110

    Google Scholar 

  • Voudouris P, Spry PG, Sakellaris GA, Mavrogonatos C (2011) A cervelleite-like mineral and other Ag-Cu-Te-S minerals [Ag2CuTeS and (Ag,Cu)2TeS] in gold-bearing veins in metamorphic rocks of the Cycladic Blueschist Unit, Kallianou, Evia Island, Greece. Min Petr 101:169–183

    Google Scholar 

  • Voudouris P, Mavrogonatos C, Spry PG, Baker T, Melfos V, Klemd R, Haase K, Repstock A, Djiba A, Bismayer U, Tarantola A, Scheffer C, Moritz R, Kouzmanov K, Alfieris D, Papavassiliou K, Schaarschmidt A, Galanopoulos E, Galanos E, Kołodziejczyk J, Stergiou C, Melfou M (2019) Porphyry and epithermal deposits in Greece: an overview, new discoveries, and mineralogical constraints on their genesis. Ore Geol Rev 107:654–691. https://doi.org/10.1016/j.oregeorev.2019.03.019

    Article  Google Scholar 

  • Whitney D, Evans B (2010) Abbreviations for names of rock-forming minerals. Am Min 95:185–187

    Google Scholar 

  • Wilkinson JJ (2001) Fluid inclusions in hydrothermal ore deposits. Lithos 55:229–272

    Google Scholar 

  • Williams-Jones AE, Samson IM, Ault KM, Gagnon JE, Fryer BJ (2010) The genesis of distal zinc skarns: evidence from the Mochito deposit, Honduras. Econ Geol 105:1411–1440

    Google Scholar 

  • Xypolias P, Iliopoulos I, Chatzaras V, Kokkalas S (2012) Subduction and exhumation related structures in the Cycladic Blueschists: insights from Evia Island (Aegean region, Greece). Tectonics 31:TC2001. https://doi.org/10.1029/2011TC002946

    Article  Google Scholar 

  • Zartman RE, Doe BR (1981) Plumbotectonics. The model Tectonoph 75:135–162

    Google Scholar 

  • Zheng YF (1993) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091

    Google Scholar 

  • Zheng YF (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem J 33:109–126

    Google Scholar 

  • Zhou L, Mernagh TP, Lan T, Tang Y, Wygralak A (2019) Intrusion related gold deposits in the Tanami and Kurundi-Kurinelli goldfields, Northern Territory, Australia: Constraints from LA-ICPMS analysis of fluid inclusions. Ore Geo Rev. https://doi.org/10.1016/j.oregeorev.2019.103189

Download references

Acknowledgments

We also thank Elias Kevrekidis, Dimitris Palikaras, and Dr. Ioannis Iliopoulos at the University of Patras for his assistance on the CL imaging. Critical comments from Georges Beaudoin, James Saunders, Nigel Cook, Tim Baker, and Frank Melcher are gratefully acknowledged.

Funding

Research funds for this work were obtained from government grants to KStS, a “Pythagoras II” post-doctoral fellowship to Tombros S.F., and the grants (41573036, 40973035, 41173062, 41030423, and 1212011085471) of the National Natural Science Foundation of China to Pr. J.J. Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos F. Tombros.

Additional information

Editorial handling: F. Melcher

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 92.3 kb)

ESM 2

(DOCX 92 kb)

ESM 3

(DOCX 2286 kb)

ESM 4

(DOCX 2286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tombros, S.F., Kokkalas, S., Seymour, K.S. et al. The Kallianos Au-Ag-Te mineralization, Evia Island, Greece: a detachment-related distal hydrothermal deposit of the Attico-Cycladic Metallogenetic Massif. Miner Deposita 56, 665–684 (2021). https://doi.org/10.1007/s00126-020-00989-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-020-00989-3

Keywords

Navigation